// // DualSVC.cpp // // Created by Marc Melikyan on 10/2/20. // #include "dual_svc.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include Ref MLPPDualSVC::model_set_test(const Ref &X) { return evaluatem(X); } real_t MLPPDualSVC::model_test(const Ref &x) { return evaluatev(x); } void MLPPDualSVC::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { MLPPCost mlpp_cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); Ref input_set_i_row_tmp; input_set_i_row_tmp.instance(); input_set_i_row_tmp->resize(_input_set->size().x); Ref input_set_j_row_tmp; input_set_j_row_tmp.instance(); input_set_j_row_tmp->resize(_input_set->size().x); while (true) { cost_prev = cost(_alpha, _input_set, _output_set); _alpha = alg.subtractionnv(_alpha, alg.scalar_multiplynv(learning_rate, mlpp_cost.dual_form_svm_deriv(_alpha, _input_set, _output_set))); alpha_projection(); // Calculating the bias real_t biasGradient = 0; for (int i = 0; i < _alpha->size(); i++) { real_t sum = 0; if (_alpha->element_get(i) < _C && _alpha->element_get(i) > 0) { for (int j = 0; j < _alpha->size(); j++) { if (_alpha->element_get(j) > 0) { _input_set->row_get_into_mlpp_vector(i, input_set_i_row_tmp); _input_set->row_get_into_mlpp_vector(j, input_set_j_row_tmp); sum += _alpha->element_get(j) * _output_set->element_get(j) * alg.dotnv(input_set_j_row_tmp, input_set_i_row_tmp); // TO DO: DON'T forget to add non-linear kernelizations. } } } biasGradient = (1 - _output_set->element_get(i) * sum) / _output_set->element_get(i); break; } _bias -= biasGradient * learning_rate; forward_pass(); // UI PORTION if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_alpha, _input_set, _output_set)); MLPPUtilities::print_ui_vb(_alpha, _bias); } epoch++; if (epoch > max_epoch) { break; } } } // void MLPPDualSVC::SGD(real_t learning_rate, int max_epoch, bool UI){ // class MLPPCost cost; // MLPPActivation avn; // MLPPLinAlg alg; // MLPPReg regularization; // real_t cost_prev = 0; // int epoch = 1; // while(true){ // std::random_device rd; // std::default_random_engine generator(rd()); // std::uniform_int_distribution distribution(0, int(n - 1)); // int outputIndex = distribution(generator); // cost_prev = Cost(alpha, _input_set[outputIndex], _output_set[outputIndex]); // // Bias updation // bias -= learning_rate * costDeriv; // y_hat = Evaluate({_input_set[outputIndex]}); // if(UI) { // MLPPUtilities::CostInfo(epoch, cost_prev, Cost(alpha)); // MLPPUtilities::UI(weights, bias); // } // epoch++; // if(epoch > max_epoch) { break; } // } // forwardPass(); // } // void MLPPDualSVC::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI){ // class MLPPCost cost; // MLPPActivation avn; // MLPPLinAlg alg; // MLPPReg regularization; // real_t cost_prev = 0; // int epoch = 1; // // Creating the mini-batches // int n_mini_batch = n/mini_batch_size; // auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); // while(true){ // for(int i = 0; i < n_mini_batch; i++){ // std::vector y_hat = Evaluate(inputMiniBatches[i]); // std::vector z = propagate(inputMiniBatches[i]); // cost_prev = Cost(z, outputMiniBatches[i], weights, C); // // Calculating the weight gradients // weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C)))); // weights = regularization.regWeights(weights, learning_rate/n, 0, "Ridge"); // // Calculating the bias gradients // bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n; // forwardPass(); // y_hat = Evaluate(inputMiniBatches[i]); // if(UI) { // MLPPUtilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C)); // MLPPUtilities::UI(weights, bias); // } // } // epoch++; // if(epoch > max_epoch) { break; } // } // forwardPass(); // } real_t MLPPDualSVC::score() { MLPPUtilities util; return util.performance_vec(_y_hat, _output_set); } void MLPPDualSVC::save(const String &file_name) { MLPPUtilities util; //util.saveParameters(file_name, _alpha, _bias); } MLPPDualSVC::MLPPDualSVC(const Ref &p_input_set, const Ref &p_output_set, real_t p_C, KernelMethod p_kernel) { _input_set = p_input_set; _output_set = p_output_set; _n = p_input_set->size().y; _k = p_input_set->size().x; _C = p_C; _kernel = p_kernel; _y_hat.instance(); _y_hat->resize(_n); MLPPUtilities utils; _bias = utils.bias_initializationr(); _alpha.instance(); _alpha->resize(_n); utils.weight_initializationv(_alpha); // One alpha for all training examples, as per the lagrangian multipliers. _K = kernel_functionm(_input_set, _input_set, _kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated. } MLPPDualSVC::MLPPDualSVC() { } MLPPDualSVC::~MLPPDualSVC() { } real_t MLPPDualSVC::cost(const Ref &alpha, const Ref &X, const Ref &y) { class MLPPCost cost; return cost.dual_form_svm(alpha, X, y); } real_t MLPPDualSVC::evaluatev(const Ref &x) { MLPPActivation avn; return avn.sign_normr(propagatev(x)); } real_t MLPPDualSVC::propagatev(const Ref &x) { MLPPLinAlg alg; real_t z = 0; Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); for (int j = 0; j < _alpha->size(); j++) { if (_alpha->element_get(j) != 0) { _input_set->row_get_into_mlpp_vector(j, input_set_row_tmp); z += _alpha->element_get(j) * _output_set->element_get(j) * alg.dotnv(input_set_row_tmp, x); // TO DO: DON'T forget to add non-linear kernelizations. } } z += _bias; return z; } Ref MLPPDualSVC::evaluatem(const Ref &X) { MLPPActivation avn; return avn.sign_normv(propagatem(X)); } Ref MLPPDualSVC::propagatem(const Ref &X) { MLPPLinAlg alg; Ref z; z.instance(); z->resize(X->size().y); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref x_row_tmp; x_row_tmp.instance(); x_row_tmp->resize(X->size().x); for (int i = 0; i < X->size().y; i++) { real_t sum = 0; for (int j = 0; j < _alpha->size(); j++) { if (_alpha->element_get(j) != 0) { _input_set->row_get_into_mlpp_vector(j, input_set_row_tmp); X->row_get_into_mlpp_vector(i, x_row_tmp); sum += _alpha->element_get(j) * _output_set->element_get(j) * alg.dotnv(input_set_row_tmp, x_row_tmp); // TO DO: DON'T forget to add non-linear kernelizations. } } sum += _bias; z->element_set(i, sum); } return z; } void MLPPDualSVC::forward_pass() { MLPPActivation avn; _z = propagatem(_input_set); _y_hat = avn.sign_normv(_z); } void MLPPDualSVC::alpha_projection() { for (int i = 0; i < _alpha->size(); i++) { if (_alpha->element_get(i) > _C) { _alpha->element_set(i, _C); } else if (_alpha->element_get(i) < 0) { _alpha->element_set(i, 0); } } } real_t MLPPDualSVC::kernel_functionv(const Ref &v, const Ref &u, KernelMethod kernel) { MLPPLinAlg alg; if (kernel == KERNEL_METHOD_LINEAR) { return alg.dotnv(u, v); } return 0; } Ref MLPPDualSVC::kernel_functionm(const Ref &U, const Ref &V, KernelMethod kernel) { MLPPLinAlg alg; if (kernel == KERNEL_METHOD_LINEAR) { return alg.matmultnm(_input_set, alg.transposenm(_input_set)); } Ref m; m.instance(); return m; } void MLPPDualSVC::_bind_methods() { }