// // SoftmaxNet.cpp // // Created by Marc Melikyan on 10/2/20. // #include "softmax_net.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../data/data.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include /* Ref MLPPSoftmaxNet::get_input_set() { return _input_set; } void MLPPSoftmaxNet::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } Ref MLPPSoftmaxNet::get_output_set() { return _output_set; } void MLPPSoftmaxNet::set_output_set(const Ref &val) { _output_set = val; _initialized = false; } MLPPReg::RegularizationType MLPPSoftmaxNet::get_reg() { return _reg; } void MLPPSoftmaxNet::set_reg(const MLPPReg::RegularizationType val) { _reg = val; _initialized = false; } real_t MLPPSoftmaxNet::get_lambda() { return _lambda; } void MLPPSoftmaxNet::set_lambda(const real_t val) { _lambda = val; _initialized = false; } real_t MLPPSoftmaxNet::get_alpha() { return _alpha; } void MLPPSoftmaxNet::set_alpha(const real_t val) { _alpha = val; _initialized = false; } */ std::vector MLPPSoftmaxNet::model_test(std::vector x) { return evaluatev(x); } std::vector> MLPPSoftmaxNet::model_set_test(std::vector> X) { return evaluatem(X); } void MLPPSoftmaxNet::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); // Calculating the errors std::vector> error = alg.subtraction(_y_hat, _output_set); // Calculating the weight/bias gradients for layer 2 std::vector> D2_1 = alg.matmult(alg.transpose(_a2), error); // weights and bias updation for layer 2 _weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate, D2_1)); //_reg _weights2 = regularization.regWeights(_weights2, _lambda, _alpha, "None"); _bias2 = alg.subtractMatrixRows(_bias2, alg.scalarMultiply(learning_rate, error)); //Calculating the weight/bias for layer 1 std::vector> D1_1 = alg.matmult(error, alg.transpose(_weights2)); std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(_z2, true)); std::vector> D1_3 = alg.matmult(alg.transpose(_input_set), D1_2); // weight an bias updation for layer 1 _weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate, D1_3)); //_reg _weights1 = regularization.regWeights(_weights1, _lambda, _alpha, "None"); _bias1 = alg.subtractMatrixRows(_bias1, alg.scalarMultiply(learning_rate, D1_2)); forward_pass(); // UI PORTION if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set)); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(_weights1, _bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPSoftmaxNet::sgd(real_t learning_rate, int max_epoch, bool ui) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); while (true) { int outputIndex = distribution(generator); std::vector y_hat = evaluatev(_input_set[outputIndex]); auto prop_res = propagatev(_input_set[outputIndex]); auto z2 = std::get<0>(prop_res); auto a2 = std::get<1>(prop_res); cost_prev = cost({ y_hat }, { _output_set[outputIndex] }); std::vector error = alg.subtraction(y_hat, _output_set[outputIndex]); // Weight updation for layer 2 std::vector> D2_1 = alg.outerProduct(error, a2); _weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate, alg.transpose(D2_1))); //_reg _weights2 = regularization.regWeights(_weights2, _lambda, _alpha, "None"); // Bias updation for layer 2 _bias2 = alg.subtraction(_bias2, alg.scalarMultiply(learning_rate, error)); // Weight updation for layer 1 std::vector D1_1 = alg.mat_vec_mult(_weights2, error); std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true)); std::vector> D1_3 = alg.outerProduct(_input_set[outputIndex], D1_2); _weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate, D1_3)); //_reg _weights1 = regularization.regWeights(_weights1, _lambda, _alpha, "None"); // Bias updation for layer 1 _bias1 = alg.subtraction(_bias1, alg.scalarMultiply(learning_rate, D1_2)); y_hat = evaluatev(_input_set[outputIndex]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost({ y_hat }, { _output_set[outputIndex] })); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(_weights1, _bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPSoftmaxNet::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector> y_hat = evaluatem(inputMiniBatches[i]); auto propagate_res = propagatem(inputMiniBatches[i]); auto z2 = std::get<0>(propagate_res); auto a2 = std::get<1>(propagate_res); cost_prev = cost(y_hat, outputMiniBatches[i]); // Calculating the errors std::vector> error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight/bias gradients for layer 2 std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); // weights and bias updation for layser 2 _weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate, D2_1)); //_reg _weights2 = regularization.regWeights(_weights2, _lambda, _alpha, "None"); // Bias Updation for layer 2 _bias2 = alg.subtractMatrixRows(_bias2, alg.scalarMultiply(learning_rate, error)); //Calculating the weight/bias for layer 1 std::vector> D1_1 = alg.matmult(error, alg.transpose(_weights2)); std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true)); std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); // weight an bias updation for layer 1 _weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate, D1_3)); //_reg _weights1 = regularization.regWeights(_weights1, _lambda, _alpha, "None"); _bias1 = alg.subtractMatrixRows(_bias1, alg.scalarMultiply(learning_rate, D1_2)); y_hat = evaluatem(inputMiniBatches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, outputMiniBatches[i])); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(_weights1, _bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(_weights2, _bias2); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPSoftmaxNet::score() { MLPPUtilities util; return util.performance(_y_hat, _output_set); } void MLPPSoftmaxNet::save(std::string fileName) { MLPPUtilities util; util.saveParameters(fileName, _weights1, _bias1, false, 1); util.saveParameters(fileName, _weights2, _bias2, true, 2); } std::vector> MLPPSoftmaxNet::get_embeddings() { return _weights1; } bool MLPPSoftmaxNet::is_initialized() { return _initialized; } void MLPPSoftmaxNet::initialize() { if (_initialized) { return; } //ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); _initialized = true; } MLPPSoftmaxNet::MLPPSoftmaxNet(std::vector> p_input_set, std::vector> p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { _input_set = p_input_set; _output_set = p_output_set; _n = p_input_set.size(); _k = p_input_set[0].size(); _n_hidden = p_n_hidden; _n_class = p_output_set[0].size(); _reg = p_reg; _lambda = p_lambda; _alpha = p_alpha; _y_hat.resize(_n); _weights1 = MLPPUtilities::weightInitialization(_k, _n_hidden); _weights2 = MLPPUtilities::weightInitialization(_n_hidden, _n_class); _bias1 = MLPPUtilities::biasInitialization(_n_hidden); _bias2 = MLPPUtilities::biasInitialization(_n_class); _initialized = true; } MLPPSoftmaxNet::MLPPSoftmaxNet() { _initialized = false; } MLPPSoftmaxNet::~MLPPSoftmaxNet() { } real_t MLPPSoftmaxNet::cost(std::vector> y_hat, std::vector> y) { MLPPReg regularization; MLPPData data; class MLPPCost cost; //_reg return cost.CrossEntropy(y_hat, y) + regularization.regTerm(_weights1, _lambda, _alpha, "None") + regularization.regTerm(_weights2, _lambda, _alpha, "None"); } std::vector MLPPSoftmaxNet::evaluatev(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(_weights1), x), _bias1); std::vector a2 = avn.sigmoid(z2); return avn.adjSoftmax(alg.addition(alg.mat_vec_mult(alg.transpose(_weights2), a2), _bias2)); } std::tuple, std::vector> MLPPSoftmaxNet::propagatev(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(_weights1), x), _bias1); std::vector a2 = avn.sigmoid(z2); return { z2, a2 }; } std::vector> MLPPSoftmaxNet::evaluatem(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; std::vector> z2 = alg.mat_vec_add(alg.matmult(X, _weights1), _bias1); std::vector> a2 = avn.sigmoid(z2); return avn.adjSoftmax(alg.mat_vec_add(alg.matmult(a2, _weights2), _bias2)); } std::tuple>, std::vector>> MLPPSoftmaxNet::propagatem(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; std::vector> z2 = alg.mat_vec_add(alg.matmult(X, _weights1), _bias1); std::vector> a2 = avn.sigmoid(z2); return { z2, a2 }; } void MLPPSoftmaxNet::forward_pass() { MLPPLinAlg alg; MLPPActivation avn; _z2 = alg.mat_vec_add(alg.matmult(_input_set, _weights1), _bias1); _a2 = avn.sigmoid(_z2); _y_hat = avn.adjSoftmax(alg.mat_vec_add(alg.matmult(_a2, _weights2), _bias2)); } void MLPPSoftmaxNet::_bind_methods() { /* ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPSoftmaxNet::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPSoftmaxNet::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPSoftmaxNet::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPSoftmaxNet::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPSoftmaxNet::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPSoftmaxNet::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPSoftmaxNet::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPSoftmaxNet::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPSoftmaxNet::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPSoftmaxNet::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPSoftmaxNet::model_test); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPSoftmaxNet::model_set_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxNet::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxNet::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPSoftmaxNet::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPSoftmaxNet::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPSoftmaxNet::save); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPSoftmaxNet::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPSoftmaxNet::initialize); */ }