//
//  OutlierFinder.cpp
//
//  Created by Marc Melikyan on 11/13/20.
//

#include "outlier_finder.h"

#include "../stat/stat.h"

real_t MLPPOutlierFinder::get_threshold() {
	return _threshold;
}
void MLPPOutlierFinder::set_threshold(real_t val) {
	_threshold = val;
}

Vector<Vector<real_t>> MLPPOutlierFinder::model_set_test(const Ref<MLPPMatrix> &input_set) {
	ERR_FAIL_COND_V(!input_set.is_valid(), Vector<Vector<real_t>>());

	MLPPStat stat;

	Size2i input_set_size = input_set->size();

	Vector<Vector<real_t>> outliers;
	outliers.resize(input_set_size.y);

	Ref<MLPPVector> input_set_i_row_tmp;
	input_set_i_row_tmp.instance();
	input_set_i_row_tmp->resize(input_set_size.x);

	for (int i = 0; i < input_set_size.y; ++i) {
		input_set->get_row_into_mlpp_vector(i, input_set_i_row_tmp);
		real_t meanv = stat.meanv(input_set_i_row_tmp);
		real_t s_dev_v = stat.standard_deviationv(input_set_i_row_tmp);

		for (int j = 0; j < input_set_size.x; ++j) {
			real_t input_set_i_j = input_set->get_element(i, j);

			real_t z = (input_set_i_j - meanv) / s_dev_v;

			if (ABS(z) > _threshold) {
				outliers.write[i].push_back(input_set_i_j);
			}
		}
	}

	return outliers;
}

Array MLPPOutlierFinder::model_set_test_bind(const Ref<MLPPMatrix> &input_set) {
	Vector<Vector<real_t>> res = model_set_test(input_set);

	Array arr;

	for (int i = 0; i < res.size(); ++i) {
		//will get converted to PoolRealArray
		arr.push_back(Variant(res[i]));
	}

	return arr;
}

PoolVector2iArray MLPPOutlierFinder::model_set_test_indices(const Ref<MLPPMatrix> &input_set) {
	ERR_FAIL_COND_V(!input_set.is_valid(), PoolVector2iArray());

	MLPPStat stat;

	Size2i input_set_size = input_set->size();

	PoolVector2iArray outliers;

	Ref<MLPPVector> input_set_i_row_tmp;
	input_set_i_row_tmp.instance();
	input_set_i_row_tmp->resize(input_set_size.x);

	for (int i = 0; i < input_set_size.y; ++i) {
		input_set->get_row_into_mlpp_vector(i, input_set_i_row_tmp);
		real_t meanv = stat.meanv(input_set_i_row_tmp);
		real_t s_dev_v = stat.standard_deviationv(input_set_i_row_tmp);

		for (int j = 0; j < input_set_size.x; ++j) {
			real_t z = (input_set->get_element(i, j) - meanv) / s_dev_v;

			if (ABS(z) > _threshold) {
				outliers.push_back(Vector2i(j, i));
			}
		}
	}

	return outliers;
}

PoolRealArray MLPPOutlierFinder::model_test(const Ref<MLPPVector> &input_set) {
	ERR_FAIL_COND_V(!input_set.is_valid(), PoolRealArray());

	MLPPStat stat;
	PoolRealArray outliers;

	real_t mean = stat.meanv(input_set);
	real_t s_dev = stat.standard_deviationv(input_set);

	int input_set_size = input_set->size();
	const real_t *input_set_ptr = input_set->ptr();

	for (int i = 0; i < input_set_size; ++i) {
		real_t input_set_i = input_set_ptr[i];

		real_t z = (input_set_i - mean) / s_dev;

		if (ABS(z) > _threshold) {
			outliers.push_back(input_set_i);
		}
	}

	return outliers;
}

MLPPOutlierFinder::MLPPOutlierFinder(real_t threshold) {
	_threshold = threshold;
}

MLPPOutlierFinder::MLPPOutlierFinder() {
	_threshold = 0;
}
MLPPOutlierFinder::~MLPPOutlierFinder() {
}

void MLPPOutlierFinder::_bind_methods() {
	ClassDB::bind_method(D_METHOD("get_threshold"), &MLPPOutlierFinder::get_threshold);
	ClassDB::bind_method(D_METHOD("set_threshold", "val"), &MLPPOutlierFinder::set_threshold);
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "threshold"), "set_threshold", "get_threshold");

	ClassDB::bind_method(D_METHOD("model_set_test", "input_set"), &MLPPOutlierFinder::model_set_test_bind);
	ClassDB::bind_method(D_METHOD("model_set_test_indices", "input_set"), &MLPPOutlierFinder::model_set_test_indices);

	ClassDB::bind_method(D_METHOD("model_test", "input_set"), &MLPPOutlierFinder::model_test);
}