#include "mlpp_tests.h" #include "core/math/math_funcs.h" #include "core/log/logger.h" //TODO remove #include #include #include #include #include "../mlpp/lin_alg/mlpp_matrix.h" #include "../mlpp/lin_alg/mlpp_vector.h" #include "../mlpp/activation/activation.h" #include "../mlpp/ann/ann.h" #include "../mlpp/auto_encoder/auto_encoder.h" #include "../mlpp/bernoulli_nb/bernoulli_nb.h" #include "../mlpp/c_log_log_reg/c_log_log_reg.h" #include "../mlpp/convolutions/convolutions.h" #include "../mlpp/cost/cost.h" #include "../mlpp/data/data.h" #include "../mlpp/dual_svc/dual_svc.h" #include "../mlpp/exp_reg/exp_reg.h" #include "../mlpp/gan/gan.h" #include "../mlpp/gaussian_nb/gaussian_nb.h" #include "../mlpp/kmeans/kmeans.h" #include "../mlpp/knn/knn.h" #include "../mlpp/lin_alg/lin_alg.h" #include "../mlpp/lin_reg/lin_reg.h" #include "../mlpp/log_reg/log_reg.h" #include "../mlpp/mann/mann.h" #include "../mlpp/mlp/mlp.h" #include "../mlpp/multinomial_nb/multinomial_nb.h" #include "../mlpp/numerical_analysis/numerical_analysis.h" #include "../mlpp/outlier_finder/outlier_finder.h" #include "../mlpp/pca/pca.h" #include "../mlpp/probit_reg/probit_reg.h" #include "../mlpp/softmax_net/softmax_net.h" #include "../mlpp/softmax_reg/softmax_reg.h" #include "../mlpp/stat/stat.h" #include "../mlpp/svc/svc.h" #include "../mlpp/tanh_reg/tanh_reg.h" #include "../mlpp/transforms/transforms.h" #include "../mlpp/uni_lin_reg/uni_lin_reg.h" #include "../mlpp/wgan/wgan.h" #include "../mlpp/ann/ann_old.h" #include "../mlpp/auto_encoder/auto_encoder_old.h" #include "../mlpp/bernoulli_nb/bernoulli_nb_old.h" #include "../mlpp/c_log_log_reg/c_log_log_reg_old.h" #include "../mlpp/dual_svc/dual_svc_old.h" #include "../mlpp/exp_reg/exp_reg_old.h" #include "../mlpp/gan/gan_old.h" #include "../mlpp/gaussian_nb/gaussian_nb_old.h" #include "../mlpp/hidden_layer/hidden_layer_old.h" #include "../mlpp/lin_reg/lin_reg_old.h" #include "../mlpp/log_reg/log_reg_old.h" #include "../mlpp/mann/mann_old.h" #include "../mlpp/mlp/mlp_old.h" #include "../mlpp/multi_output_layer/multi_output_layer_old.h" #include "../mlpp/multinomial_nb/multinomial_nb_old.h" #include "../mlpp/numerical_analysis/numerical_analysis_old.h" #include "../mlpp/outlier_finder/outlier_finder_old.h" #include "../mlpp/output_layer/output_layer_old.h" #include "../mlpp/pca/pca_old.h" #include "../mlpp/probit_reg/probit_reg_old.h" #include "../mlpp/softmax_net/softmax_net_old.h" #include "../mlpp/softmax_reg/softmax_reg_old.h" #include "../mlpp/svc/svc_old.h" #include "../mlpp/tanh_reg/tanh_reg_old.h" #include "../mlpp/uni_lin_reg/uni_lin_reg_old.h" #include "../mlpp/wgan/wgan_old.h" Vector dstd_vec_to_vec(const std::vector &in) { Vector r; r.resize(static_cast(in.size())); real_t *darr = r.ptrw(); for (uint32_t i = 0; i < in.size(); ++i) { darr[i] = in[i]; } return r; } Vector> dstd_mat_to_mat(const std::vector> &in) { Vector> r; for (uint32_t i = 0; i < in.size(); ++i) { r.push_back(dstd_vec_to_vec(in[i])); } return r; } void MLPPTests::test_statistics() { ERR_PRINT("MLPPTests::test_statistics() Started!"); MLPPStat stat; MLPPConvolutions conv; // STATISTICS std::vector x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; std::vector y = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }; std::vector w = { 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 }; is_approx_equalsd(stat.mean(x), 5.5, "Arithmetic Mean"); is_approx_equalsd(stat.mean(x), 5.5, "Median"); is_approx_equals_dvec(dstd_vec_to_vec(stat.mode(x)), dstd_vec_to_vec(x), "stat.mode(x)"); is_approx_equalsd(stat.range(x), 9, "Range"); is_approx_equalsd(stat.midrange(x), 4.5, "Midrange"); is_approx_equalsd(stat.absAvgDeviation(x), 2.5, "Absolute Average Deviation"); is_approx_equalsd(stat.standardDeviation(x), 3.02765, "Standard Deviation"); is_approx_equalsd(stat.variance(x), 9.16667, "Variance"); is_approx_equalsd(stat.covariance(x, y), -9.16667, "Covariance"); is_approx_equalsd(stat.correlation(x, y), -1, "Correlation"); is_approx_equalsd(stat.R2(x, y), 1, "R^2"); // Returns 1 - (1/k^2) is_approx_equalsd(stat.chebyshevIneq(2), 0.75, "Chebyshev Inequality"); is_approx_equalsd(stat.weightedMean(x, w), 5.5, "Weighted Mean"); is_approx_equalsd(stat.geometricMean(x), 4.52873, "Geometric Mean"); is_approx_equalsd(stat.harmonicMean(x), 3.41417, "Harmonic Mean"); is_approx_equalsd(stat.RMS(x), 6.20484, "Root Mean Square (Quadratic mean)"); is_approx_equalsd(stat.powerMean(x, 5), 7.39281, "Power Mean (p = 5)"); is_approx_equalsd(stat.lehmerMean(x, 5), 8.71689, "Lehmer Mean (p = 5)"); is_approx_equalsd(stat.weightedLehmerMean(x, w, 5), 8.71689, "Weighted Lehmer Mean (p = 5)"); is_approx_equalsd(stat.contraHarmonicMean(x), 7, "Contraharmonic Mean"); is_approx_equalsd(stat.heronianMean(1, 10), 4.72076, "Hernonian Mean"); is_approx_equalsd(stat.heinzMean(1, 10, 1), 5.5, "Heinz Mean (x = 1)"); is_approx_equalsd(stat.neumanSandorMean(1, 10), 3.36061, "Neuman-Sandor Mean"); is_approx_equalsd(stat.stolarskyMean(1, 10, 5), 6.86587, "Stolarsky Mean (p = 5)"); is_approx_equalsd(stat.identricMean(1, 10), 4.75135, "Identric Mean"); is_approx_equalsd(stat.logMean(1, 10), 3.90865, "Logarithmic Mean"); is_approx_equalsd(stat.absAvgDeviation(x), 2.5, "Absolute Average Deviation"); ERR_PRINT("MLPPTests::test_statistics() Finished!"); } void MLPPTests::test_linear_algebra() { MLPPLinAlg alg; std::vector> square = { { 1, 1 }, { -1, 1 }, { 1, -1 }, { -1, -1 } }; std::vector> square_rot_res = { { 1.41421, 1.11022e-16 }, { -1.11022e-16, 1.41421 }, { 1.11022e-16, -1.41421 }, { -1.41421, -1.11022e-16 } }; is_approx_equals_dmat(dstd_mat_to_mat(alg.rotate(square, M_PI / 4)), dstd_mat_to_mat(square_rot_res), "alg.rotate(square, M_PI / 4)"); std::vector> A = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, }; std::vector a = { 4, 3, 1, 3 }; std::vector b = { 3, 5, 6, 1 }; std::vector> mmtr_res = { { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 }, { 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 }, { 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 }, { 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 }, { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }, { 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 }, { 14, 28, 42, 56, 70, 84, 98, 112, 126, 140 }, { 16, 32, 48, 64, 80, 96, 112, 128, 144, 160 }, { 18, 36, 54, 72, 90, 108, 126, 144, 162, 180 }, { 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 } }; is_approx_equals_dmat(dstd_mat_to_mat(alg.matmult(alg.transpose(A), A)), dstd_mat_to_mat(mmtr_res), "alg.matmult(alg.transpose(A), A)"); is_approx_equalsd(alg.dot(a, b), 36, "alg.dot(a, b)"); std::vector> had_prod_res = { { 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 }, { 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 } }; is_approx_equals_dmat(dstd_mat_to_mat(alg.hadamard_product(A, A)), dstd_mat_to_mat(had_prod_res), "alg.hadamard_product(A, A)"); std::vector> id_10_res = { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, }; is_approx_equals_dmat(dstd_mat_to_mat(alg.identity(10)), dstd_mat_to_mat(id_10_res), "alg.identity(10)"); } void MLPPTests::test_univariate_linear_regression() { // Univariate, simple linear regression, case where k = 1 MLPPData data; Ref ds = data.load_fires_and_crime(_fires_and_crime_data_path); MLPPUniLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); std::vector slr_res = { 24.1095, 28.4829, 29.8082, 26.0974, 27.2902, 61.0851, 30.4709, 25.0372, 25.5673, 35.9046, 54.4587, 18.8083, 23.4468, 18.5432, 19.2059, 21.1938, 23.0492, 18.8083, 25.4348, 35.9046, 37.76, 40.278, 63.8683, 68.5068, 40.4106, 46.772, 32.0612, 23.3143, 44.784, 44.519, 27.8203, 20.6637, 22.5191, 53.796, 38.9527, 30.8685, 20.3986 }; is_approx_equals_dvec(dstd_vec_to_vec(model_old.modelSetTest(ds->get_input()->to_std_vector())), dstd_vec_to_vec(slr_res), "stat.mode(x)"); MLPPUniLinReg model(ds->get_input(), ds->get_output()); std::vector slr_res_n = { 24.109467, 28.482935, 29.808228, 26.097408, 27.290173, 61.085152, 30.470875, 25.037172, 25.567291, 35.904579, 54.458687, 18.808294, 23.446819, 18.543236, 19.205883, 21.193821, 23.049232, 18.808294, 25.434761, 35.904579, 37.759987, 40.278046, 63.868271, 68.50679, 40.410576, 46.77198, 32.061226, 23.314291, 44.784042, 44.518982, 27.82029, 20.663704, 22.519115, 53.796036, 38.952751, 30.868464, 20.398645 }; Ref slr_res_v; slr_res_v.instance(); slr_res_v->set_from_std_vector(slr_res_n); Ref res = model.model_set_test(ds->get_input()); if (!slr_res_v->is_equal_approx(res)) { ERR_PRINT("!slr_res_v->is_equal_approx(res)"); ERR_PRINT(res->to_string()); ERR_PRINT(slr_res_v->to_string()); } } void MLPPTests::test_multivariate_linear_regression_gradient_descent(bool ui) { MLPPData data; MLPPLinAlg alg; Ref ds = data.load_california_housing(_california_housing_data_path); MLPPLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model_old.gradientDescent(0.001, 30, ui); alg.printVector(model_old.modelSetTest(ds->get_input()->to_std_vector())); MLPPLinReg model(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model.gradient_descent(0.001, 30, ui); alg.printVector(model.model_set_test(ds->get_input()->to_std_vector())); } void MLPPTests::test_multivariate_linear_regression_sgd(bool ui) { MLPPData data; MLPPLinAlg alg; Ref ds = data.load_california_housing(_california_housing_data_path); MLPPLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model_old.SGD(0.00000001, 300000, ui); alg.printVector(model_old.modelSetTest(ds->get_input()->to_std_vector())); MLPPLinReg model(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model.sgd(0.00000001, 300000, ui); alg.printVector(model.model_set_test(ds->get_input()->to_std_vector())); } void MLPPTests::test_multivariate_linear_regression_mbgd(bool ui) { MLPPData data; MLPPLinAlg alg; Ref ds = data.load_california_housing(_california_housing_data_path); MLPPLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model_old.MBGD(0.001, 10000, 2, ui); alg.printVector(model_old.modelSetTest(ds->get_input()->to_std_vector())); MLPPLinReg model(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model.mbgd(0.001, 10000, 2, ui); alg.printVector(model.model_set_test(ds->get_input()->to_std_vector())); } void MLPPTests::test_multivariate_linear_regression_normal_equation(bool ui) { MLPPData data; MLPPLinAlg alg; Ref ds = data.load_california_housing(_california_housing_data_path); MLPPLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model_old.normalEquation(); alg.printVector(model_old.modelSetTest(ds->get_input()->to_std_vector())); MLPPLinReg model(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model.normal_equation(); alg.printVector(model.model_set_test(ds->get_input()->to_std_vector())); } void MLPPTests::test_multivariate_linear_regression_adam() { MLPPData data; MLPPLinAlg alg; Ref ds = data.load_california_housing(_california_housing_data_path); MLPPLinRegOld adamModelOld(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); alg.printVector(adamModelOld.modelSetTest(ds->get_input()->to_std_vector())); std::cout << "ACCURACY: " << 100 * adamModelOld.score() << "%" << std::endl; MLPPLinReg adam_model(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); alg.printVector(adam_model.model_set_test(ds->get_input()->to_std_vector())); std::cout << "ACCURACY: " << 100 * adam_model.score() << "%" << std::endl; } void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) { MLPPData data; MLPPLinAlg alg; Ref ds = data.load_california_housing(_california_housing_data_path); const int TRIAL_NUM = 1000; real_t scoreSGD = 0; real_t scoreADAM = 0; for (int i = 0; i < TRIAL_NUM; i++) { MLPPLinRegOld modelf_old(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); modelf_old.MBGD(0.001, 5, 1, ui); scoreSGD += modelf_old.score(); MLPPLinReg modelf(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); modelf.mbgd(0.001, 5, 1, ui); scoreSGD += modelf.score(); MLPPLinRegOld adamModelf_old(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); adamModelf_old.Adam(0.1, 5, 1, 0.9, 0.999, 1e-8, ui); // Change batch size = sgd, bgd scoreADAM += adamModelf_old.score(); MLPPLinReg adamModelf(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); adamModelf.adam(0.1, 5, 1, 0.9, 0.999, 1e-8, ui); // Change batch size = sgd, bgd scoreADAM += adamModelf.score(); } std::cout << "ACCURACY, AVG, SGD: " << 100 * scoreSGD / TRIAL_NUM << "%" << std::endl; std::cout << std::endl; std::cout << "ACCURACY, AVG, ADAM: " << 100 * scoreADAM / TRIAL_NUM << "%" << std::endl; } void MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent(bool ui) { MLPPData data; MLPPLinAlg alg; Ref ds = data.load_california_housing(_california_housing_data_path); std::cout << "Total epoch num: 300" << std::endl; std::cout << "Method: 1st Order w/ Jacobians" << std::endl; MLPPLinRegOld model3_old(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model3_old.gradientDescent(0.001, 300, ui); alg.printVector(model3_old.modelSetTest(ds->get_input()->to_std_vector())); MLPPLinReg model3(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg model3.gradient_descent(0.001, 300, ui); alg.printVector(model3.model_set_test(ds->get_input()->to_std_vector())); } void MLPPTests::test_multivariate_linear_regression_newton_raphson(bool ui) { MLPPData data; MLPPLinAlg alg; Ref ds = data.load_california_housing(_california_housing_data_path); std::cout << "--------------------------------------------" << std::endl; std::cout << "Total epoch num: 300" << std::endl; std::cout << "Method: Newtonian 2nd Order w/ Hessians" << std::endl; MLPPLinRegOld model2_old(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); model2_old.NewtonRaphson(1.5, 300, ui); alg.printVector(model2_old.modelSetTest(ds->get_input()->to_std_vector())); MLPPLinReg model2(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); model2.newton_raphson(1.5, 300, ui); alg.printVector(model2.model_set_test(ds->get_input()->to_std_vector())); } void MLPPTests::test_logistic_regression(bool ui) { MLPPLinAlg alg; MLPPData data; Ref dt = data.load_breast_cancer(_breast_cancer_data_path); // LOGISTIC REGRESSION MLPPLogRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector()); model_old.SGD(0.001, 100000, ui); alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector())); std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl; MLPPLogReg model(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector()); model.sgd(0.001, 100000, ui); alg.printVector(model.model_set_test(dt->get_input()->to_std_vector())); std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; } void MLPPTests::test_probit_regression(bool ui) { MLPPLinAlg alg; MLPPData data; // PROBIT REGRESSION Ref dt = data.load_breast_cancer(_breast_cancer_data_path); MLPPProbitRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector()); model_old.SGD(0.001, 10000, ui); alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector())); std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl; MLPPProbitReg model(dt->get_input(), dt->get_output()); model.sgd(0.001, 10000, ui); PLOG_MSG(model.model_set_test(dt->get_input())->to_string()); PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%"); } void MLPPTests::test_c_log_log_regression(bool ui) { MLPPLinAlg alg; // CLOGLOG REGRESSION std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } }; std::vector outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 }; MLPPCLogLogRegOld model_old(alg.transpose(inputSet), outputSet); model_old.SGD(0.1, 10000, ui); alg.printVector(model_old.modelSetTest(alg.transpose(inputSet))); std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl; MLPPCLogLogReg model(alg.transpose(inputSet), outputSet); model.sgd(0.1, 10000, ui); alg.printVector(model.model_set_test(alg.transpose(inputSet))); std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; } void MLPPTests::test_exp_reg_regression(bool ui) { MLPPLinAlg alg; // EXPREG REGRESSION std::vector> inputSet = { { 0, 1, 2, 3, 4 } }; std::vector outputSet = { 1, 2, 4, 8, 16 }; MLPPExpRegOld model_old(alg.transpose(inputSet), outputSet); model_old.SGD(0.001, 10000, ui); alg.printVector(model_old.modelSetTest(alg.transpose(inputSet))); std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl; MLPPExpReg model(alg.transpose(inputSet), outputSet); model.sgd(0.001, 10000, ui); alg.printVector(model.model_set_test(alg.transpose(inputSet))); std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; } void MLPPTests::test_tanh_regression(bool ui) { MLPPLinAlg alg; // TANH REGRESSION std::vector> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } }; std::vector outputSet = { 1, 1, 0, -1, -1 }; MLPPTanhRegOld model_old(alg.transpose(inputSet), outputSet); model_old.SGD(0.1, 10000, ui); alg.printVector(model_old.modelSetTest(alg.transpose(inputSet))); std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl; } void MLPPTests::test_softmax_regression(bool ui) { MLPPLinAlg alg; MLPPData data; Ref dt = data.load_iris(_iris_data_path); // SOFTMAX REGRESSION MLPPSoftmaxRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector()); model_old.SGD(0.1, 10000, ui); alg.printMatrix(model_old.modelSetTest(dt->get_input()->to_std_vector())); std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl; MLPPSoftmaxReg model(dt->get_input(), dt->get_output()); model.sgd(0.1, 10000, ui); PLOG_MSG(model.model_set_test(dt->get_input())->to_string()); PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%"); } void MLPPTests::test_support_vector_classification(bool ui) { //MLPPStat stat; MLPPLinAlg alg; //MLPPActivation avn; //MLPPCost cost; MLPPData data; //MLPPConvolutions conv; // SUPPORT VECTOR CLASSIFICATION Ref dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path); MLPPSVCOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), ui); model_old.SGD(0.00001, 100000, ui); alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector())); std::cout << "ACCURACY (old): " << 100 * model_old.score() << "%" << std::endl; MLPPSVC model(dt->get_input(), dt->get_output(), ui); model.sgd(0.00001, 100000, ui); PLOG_MSG((model.model_set_test(dt->get_input())->to_string())); PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%"); } void MLPPTests::test_mlp(bool ui) { MLPPLinAlg alg; // MLP std::vector> inputSet = { { 0, 0 }, { 1, 1 }, { 0, 1 }, { 1, 0 } }; std::vector outputSet = { 0, 1, 1, 0 }; MLPPMLPOld model(inputSet, outputSet, 2); model.gradientDescent(0.1, 10000, ui); alg.printVector(model.modelSetTest(inputSet)); std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; Ref input_set; input_set.instance(); input_set->set_from_std_vectors(inputSet); Ref output_set; output_set.instance(); output_set->set_from_std_vector(outputSet); MLPPMLP model_new(input_set, output_set, 2); model_new.gradient_descent(0.1, 10000, ui); String res = model_new.model_set_test(input_set)->to_string(); res += "\nACCURACY (gradient_descent): " + String::num(100 * model_new.score()) + "%"; PLOG_MSG(res); MLPPMLP model_new2(input_set, output_set, 2); model_new2.sgd(0.01, 10000, ui); res = model_new2.model_set_test(input_set)->to_string(); res += "\nACCURACY (sgd): " + String::num(100 * model_new2.score()) + "%"; PLOG_MSG(res); MLPPMLP model_new3(input_set, output_set, 2); model_new3.mbgd(0.01, 10000, 2, ui); res = model_new3.model_set_test(input_set)->to_string(); res += "\nACCURACY (mbgd): " + String::num(100 * model_new3.score()) + "%"; PLOG_MSG(res); } void MLPPTests::test_soft_max_network(bool ui) { MLPPLinAlg alg; MLPPData data; // SOFTMAX NETWORK Ref dt = data.load_wine(_wine_data_path); MLPPSoftmaxNetOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1); model_old.gradientDescent(0.01, 100000, ui); alg.printMatrix(model_old.modelSetTest(dt->get_input()->to_std_vector())); std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl; MLPPSoftmaxNet model(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1); model.gradient_descent(0.01, 100000, ui); alg.printMatrix(model.model_set_test(dt->get_input()->to_std_vector())); std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; } void MLPPTests::test_autoencoder(bool ui) { MLPPLinAlg alg; std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } }; // AUTOENCODER MLPPAutoEncoderOld model_old(alg.transpose(inputSet), 5); model_old.SGD(0.001, 300000, ui); alg.printMatrix(model_old.modelSetTest(alg.transpose(inputSet))); std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl; MLPPAutoEncoder model(alg.transpose(inputSet), 5); model.sgd(0.001, 300000, ui); alg.printMatrix(model.model_set_test(alg.transpose(inputSet))); std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; } void MLPPTests::test_dynamically_sized_ann(bool ui) { MLPPLinAlg alg; // DYNAMICALLY SIZED ANN // Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform // Possible Activations: Linear, Sigmoid, Swish, Softplus, Softsign, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep // Possible Loss Functions: MSE, RMSE, MBE, LogLoss, CrossEntropy, HingeLoss std::vector> inputSet = { { 0, 0, 1, 1 }, { 0, 1, 0, 1 } }; std::vector outputSet = { 0, 1, 1, 0 }; MLPPANNOld ann_old(alg.transpose(inputSet), outputSet); ann_old.addLayer(2, "Cosh"); ann_old.addOutputLayer("Sigmoid", "LogLoss"); ann_old.AMSGrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, ui); ann_old.Adadelta(1, 1000, 2, 0.9, 0.000001, ui); ann_old.Momentum(0.1, 8000, 2, 0.9, true, ui); ann_old.setLearningRateScheduler("Step", 0.5, 1000); ann_old.gradientDescent(0.01, 30000); alg.printVector(ann_old.modelSetTest(alg.transpose(inputSet))); std::cout << "ACCURACY: " << 100 * ann_old.score() << "%" << std::endl; MLPPANN ann(alg.transpose(inputSet), outputSet); ann.add_layer(2, "Cosh"); ann.add_output_layer("Sigmoid", "LogLoss"); ann.amsgrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, ui); ann.adadelta(1, 1000, 2, 0.9, 0.000001, ui); ann.momentum(0.1, 8000, 2, 0.9, true, ui); ann.set_learning_rate_scheduler_drop("Step", 0.5, 1000); ann.gradient_descent(0.01, 30000); alg.printVector(ann.model_set_test(alg.transpose(inputSet))); std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; } void MLPPTests::test_wgan_old(bool ui) { //MLPPStat stat; MLPPLinAlg alg; //MLPPActivation avn; //MLPPCost cost; //MLPPData data; //MLPPConvolutions conv; std::vector> outputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }, { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 } }; MLPPWGANOld gan_old(2, alg.transpose(outputSet)); // our gan is a wasserstein gan (wgan) gan_old.addLayer(5, "Sigmoid"); gan_old.addLayer(2, "RELU"); gan_old.addLayer(5, "Sigmoid"); gan_old.addOutputLayer(); // User can specify weight init- if necessary. gan_old.gradientDescent(0.1, 55000, ui); std::cout << "GENERATED INPUT: (Gaussian-sampled noise):" << std::endl; alg.printMatrix(gan_old.generateExample(100)); } void MLPPTests::test_wgan(bool ui) { //MLPPStat stat; MLPPLinAlg alg; //MLPPActivation avn; //MLPPCost cost; //MLPPData data; //MLPPConvolutions conv; std::vector> outputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }, { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 } }; Ref output_set; output_set.instance(); output_set->set_from_std_vectors(alg.transpose(outputSet)); MLPPWGAN gan(2, output_set); // our gan is a wasserstein gan (wgan) gan.add_layer(5, MLPPActivation::ACTIVATION_FUNCTION_SIGMOID); gan.add_layer(2, MLPPActivation::ACTIVATION_FUNCTION_RELU); gan.add_layer(5, MLPPActivation::ACTIVATION_FUNCTION_SIGMOID); gan.add_output_layer(); // User can specify weight init- if necessary. gan.gradient_descent(0.1, 55000, ui); String str = "GENERATED INPUT: (Gaussian-sampled noise):\n"; str += gan.generate_example(100)->to_string(); PLOG_MSG(str); } void MLPPTests::test_ann(bool ui) { MLPPLinAlg alg; std::vector> inputSet = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; // XOR std::vector outputSet = { 0, 1, 1, 0 }; MLPPANNOld ann_old(inputSet, outputSet); ann_old.addLayer(5, "Sigmoid"); ann_old.addLayer(8, "Sigmoid"); // Add more layers as needed. ann_old.addOutputLayer("Sigmoid", "LogLoss"); ann_old.gradientDescent(1, 20000, ui); std::vector predictions_old = ann_old.modelSetTest(inputSet); alg.printVector(predictions_old); // Testing out the model's preds for train set. std::cout << "ACCURACY: " << 100 * ann_old.score() << "%" << std::endl; // Accuracy. MLPPANN ann(inputSet, outputSet); ann.add_layer(5, "Sigmoid"); ann.add_layer(8, "Sigmoid"); // Add more layers as needed. ann.add_output_layer("Sigmoid", "LogLoss"); ann.gradient_descent(1, 20000, ui); std::vector predictions = ann.model_set_test(inputSet); alg.printVector(predictions); // Testing out the model's preds for train set. std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // Accuracy. } void MLPPTests::test_dynamically_sized_mann(bool ui) { MLPPLinAlg alg; MLPPData data; // DYNAMICALLY SIZED MANN (Multidimensional Output ANN) std::vector> inputSet = { { 1, 2, 3 }, { 2, 4, 6 }, { 3, 6, 9 }, { 4, 8, 12 } }; std::vector> outputSet = { { 1, 5 }, { 2, 10 }, { 3, 15 }, { 4, 20 } }; MLPPMANNOld mann_old(inputSet, outputSet); mann_old.addOutputLayer("Linear", "MSE"); mann_old.gradientDescent(0.001, 80000, false); alg.printMatrix(mann_old.modelSetTest(inputSet)); std::cout << "ACCURACY (old): " << 100 * mann_old.score() << "%" << std::endl; MLPPMANN mann(inputSet, outputSet); mann.add_output_layer("Linear", "MSE"); mann.gradient_descent(0.001, 80000, false); alg.printMatrix(mann.model_set_test(inputSet)); std::cout << "ACCURACY: " << 100 * mann.score() << "%" << std::endl; } void MLPPTests::test_train_test_split_mann(bool ui) { MLPPLinAlg alg; MLPPData data; // TRAIN TEST SPLIT CHECK std::vector> inputSet1 = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } }; std::vector> outputSet1 = { { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 } }; Ref input_set_1; input_set_1.instance(); input_set_1->set_from_std_vectors(inputSet1); Ref output_set_1; output_set_1.instance(); output_set_1->set_from_std_vectors(outputSet1); Ref d; d.instance(); d->set_input(alg.transposem(input_set_1)); d->set_output(alg.transposem(output_set_1)); MLPPData::SplitComplexData split_data = data.train_test_split(d, 0.2); PLOG_MSG(split_data.train->get_input()->to_string()); PLOG_MSG(split_data.train->get_output()->to_string()); PLOG_MSG(split_data.test->get_input()->to_string()); PLOG_MSG(split_data.test->get_output()->to_string()); MLPPMANNOld mann_old(split_data.train->get_input()->to_std_vector(), split_data.train->get_output()->to_std_vector()); mann_old.addLayer(100, "RELU", "XavierNormal"); mann_old.addOutputLayer("Softmax", "CrossEntropy", "XavierNormal"); mann_old.gradientDescent(0.1, 80000, ui); alg.printMatrix(mann_old.modelSetTest(split_data.test->get_input()->to_std_vector())); std::cout << "ACCURACY (old): " << 100 * mann_old.score() << "%" << std::endl; MLPPMANN mann(split_data.train->get_input()->to_std_vector(), split_data.train->get_output()->to_std_vector()); mann.add_layer(100, "RELU", "XavierNormal"); mann.add_output_layer("Softmax", "CrossEntropy", "XavierNormal"); mann.gradient_descent(0.1, 80000, ui); alg.printMatrix(mann.model_set_test(split_data.test->get_input()->to_std_vector())); std::cout << "ACCURACY: " << 100 * mann.score() << "%" << std::endl; } void MLPPTests::test_naive_bayes() { MLPPLinAlg alg; // NAIVE BAYES std::vector> inputSet = { { 1, 1, 1, 1, 1 }, { 0, 0, 1, 1, 1 }, { 0, 0, 1, 0, 1 } }; std::vector outputSet = { 0, 1, 0, 1, 1 }; MLPPMultinomialNBOld MNB_old(alg.transpose(inputSet), outputSet, 2); alg.printVector(MNB_old.modelSetTest(alg.transpose(inputSet))); MLPPMultinomialNB MNB(alg.transpose(inputSet), outputSet, 2); alg.printVector(MNB.model_set_test(alg.transpose(inputSet))); MLPPBernoulliNBOld BNBOld(alg.transpose(inputSet), outputSet); alg.printVector(BNBOld.modelSetTest(alg.transpose(inputSet))); MLPPBernoulliNB BNB(alg.transpose(inputSet), outputSet); alg.printVector(BNB.model_set_test(alg.transpose(inputSet))); MLPPGaussianNBOld GNBOld(alg.transpose(inputSet), outputSet, 2); alg.printVector(GNBOld.modelSetTest(alg.transpose(inputSet))); MLPPGaussianNB GNB(alg.transpose(inputSet), outputSet, 2); alg.printVector(GNB.model_set_test(alg.transpose(inputSet))); } void MLPPTests::test_k_means(bool ui) { // KMeans std::vector> inputSet = { { 32, 0, 7 }, { 2, 28, 17 }, { 0, 9, 23 } }; Ref input_set; input_set.instance(); input_set->set_from_std_vectors(inputSet); Ref kmeans; kmeans.instance(); kmeans->set_input_set(input_set); kmeans->set_k(3); kmeans->set_mean_type(MLPPKMeans::MEAN_TYPE_KMEANSPP); kmeans->train(3, ui); PLOG_MSG(kmeans->model_set_test(input_set)->to_string()); PLOG_MSG(kmeans->silhouette_scores()->to_string()); } void MLPPTests::test_knn(bool ui) { MLPPLinAlg alg; // kNN std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } }; std::vector outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 }; Ref ism; ism.instance(); ism->set_from_std_vectors(alg.transpose(inputSet)); //ERR_PRINT(ism->to_string()); Ref osm; osm.instance(); osm->set_from_std_vector(outputSet); //ERR_PRINT(osm->to_string()); Ref knn; knn.instance(); knn->set_k(7); knn->set_input_set(ism); knn->set_output_set(osm); PoolIntArray res = knn->model_set_test(ism); ERR_PRINT(String(Variant(res))); ERR_PRINT("ACCURACY: " + itos(100 * knn->score()) + "%"); //(alg.transpose(inputSet), outputSet, 8); //alg.printVector(knn.modelSetTest(alg.transpose(inputSet))); //std::cout << "ACCURACY: " << 100 * knn.score() << "%" << std::endl; } void MLPPTests::test_convolution_tensors_etc() { MLPPLinAlg alg; MLPPData data; MLPPConvolutions conv; // CONVOLUTION, POOLING, ETC.. std::vector> input = { { 1 }, }; std::vector>> tensorSet; tensorSet.push_back(input); tensorSet.push_back(input); tensorSet.push_back(input); alg.printTensor(data.rgb2xyz(tensorSet)); std::vector> input2 = { { 62, 55, 55, 54, 49, 48, 47, 55 }, { 62, 57, 54, 52, 48, 47, 48, 53 }, { 61, 60, 52, 49, 48, 47, 49, 54 }, { 63, 61, 60, 60, 63, 65, 68, 65 }, { 67, 67, 70, 74, 79, 85, 91, 92 }, { 82, 95, 101, 106, 114, 115, 112, 117 }, { 96, 111, 115, 119, 128, 128, 130, 127 }, { 109, 121, 127, 133, 139, 141, 140, 133 }, }; MLPPTransforms trans; alg.printMatrix(trans.discreteCosineTransform(input2)); alg.printMatrix(conv.convolve_2d(input2, conv.get_prewitt_vertical(), 1)); // Can use padding alg.printMatrix(conv.pool_2d(input2, 4, 4, "Max")); // Can use Max, Min, or Average pooling. std::vector>> tensorSet2; tensorSet2.push_back(input2); tensorSet2.push_back(input2); alg.printVector(conv.global_pool_3d(tensorSet2, "Average")); // Can use Max, Min, or Average global pooling. std::vector> laplacian = { { 1, 1, 1 }, { 1, -4, 1 }, { 1, 1, 1 } }; alg.printMatrix(conv.convolve_2d(conv.gaussian_filter_2d(5, 1), laplacian, 1)); } void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) { MLPPLinAlg alg; // PCA, SVD, eigenvalues & eigenvectors std::vector> inputSet = { { 1, 1 }, { 1, 1 } }; MLPPLinAlg::EigenResultOld eigen = alg.eigen_old(inputSet); std::cout << "Eigenvectors:" << std::endl; alg.printMatrix(eigen.eigen_vectors); std::cout << std::endl; std::cout << "Eigenvalues:" << std::endl; alg.printMatrix(eigen.eigen_values); std::cout << "SVD OLD START" << std::endl; MLPPLinAlg::SVDResultOld svd_old = alg.SVD(inputSet); std::cout << "U:" << std::endl; alg.printMatrix(svd_old.U); std::cout << "S:" << std::endl; alg.printMatrix(svd_old.S); std::cout << "Vt:" << std::endl; alg.printMatrix(svd_old.Vt); std::cout << "SVD OLD FIN" << std::endl; Ref input_set; input_set.instance(); input_set->set_from_std_vectors(inputSet); String str_svd = "SVD\n"; MLPPLinAlg::SVDResult svd = alg.svd(input_set); str_svd += "U:\n"; str_svd += svd.U->to_string(); str_svd += "\nS:\n"; str_svd += svd.S->to_string(); str_svd += "\nVt:\n"; str_svd += svd.Vt->to_string(); str_svd += "\n"; PLOG_MSG(str_svd); std::cout << "PCA" << std::endl; // PCA done using Jacobi's method to approximate eigenvalues and eigenvectors. MLPPPCAOld dr_old(inputSet, 1); // 1 dimensional representation. std::cout << std::endl; std::cout << "OLD Dimensionally reduced representation:" << std::endl; alg.printMatrix(dr_old.principalComponents()); std::cout << "SCORE: " << dr_old.score() << std::endl; // PCA done using Jacobi's method to approximate eigenvalues and eigenvectors. MLPPPCA dr(input_set, 1); // 1 dimensional representation. String str = "\nDimensionally reduced representation:\n"; str += dr.principal_components()->to_string(); str += "\nSCORE: " + String::num(dr.score()) + "\n"; PLOG_MSG(str); } void MLPPTests::test_nlp_and_data(bool ui) { MLPPLinAlg alg; MLPPData data; // NLP/DATA std::string verbText = "I am appearing and thinking, as well as conducting."; std::cout << "Stemming Example:" << std::endl; std::cout << data.stemming(verbText) << std::endl; std::cout << std::endl; std::vector sentences = { "He is a good boy", "She is a good girl", "The boy and girl are good" }; std::cout << "Bag of Words Example:" << std::endl; alg.printMatrix(data.BOW(sentences, "Default")); std::cout << std::endl; std::cout << "TFIDF Example:" << std::endl; alg.printMatrix(data.TFIDF(sentences)); std::cout << std::endl; std::cout << "Tokenization:" << std::endl; alg.printVector(data.tokenize(verbText)); std::cout << std::endl; std::cout << "Word2Vec:" << std::endl; std::string textArchive = { "He is a good boy. She is a good girl. The boy and girl are good." }; std::vector corpus = data.splitSentences(textArchive); MLPPData::WordsToVecResult wtvres = data.word_to_vec(corpus, "CBOW", 2, 2, 0.1, 10000); // Can use either CBOW or Skip-n-gram. alg.printMatrix(wtvres.word_embeddings); std::cout << std::endl; std::vector textArchive2 = { "pizza", "pizza hamburger cookie", "hamburger", "ramen", "sushi", "ramen sushi" }; alg.printMatrix(data.LSA(textArchive2, 2)); //alg.printMatrix(data.BOW(textArchive, "Default")); std::cout << std::endl; std::vector> inputSet = { { 1, 2 }, { 2, 3 }, { 3, 4 }, { 4, 5 }, { 5, 6 } }; std::cout << "Feature Scaling Example:" << std::endl; alg.printMatrix(data.featureScaling(inputSet)); std::cout << std::endl; std::cout << "Mean Centering Example:" << std::endl; alg.printMatrix(data.meanCentering(inputSet)); std::cout << std::endl; std::cout << "Mean Normalization Example:" << std::endl; alg.printMatrix(data.meanNormalization(inputSet)); std::cout << std::endl; } void MLPPTests::test_outlier_finder(bool ui) { MLPPLinAlg alg; // Outlier Finder //std::vector inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332523523 }; std::vector inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332 }; MLPPOutlierFinderOld outlierFinderOld(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier. alg.printVector(outlierFinderOld.modelTest(inputSet)); Ref input_set; input_set.instance(); input_set->set_from_std_vector(inputSet); MLPPOutlierFinder outlier_finder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier. PLOG_MSG(Variant(outlier_finder.model_test(input_set))); } void MLPPTests::test_new_math_functions() { MLPPLinAlg alg; MLPPActivation avn; MLPPData data; // Testing new Functions real_t z_s = 0.001; std::cout << avn.logit(z_s) << std::endl; std::cout << avn.logit(z_s, true) << std::endl; std::vector z_v = { 0.001 }; alg.printVector(avn.logit(z_v)); alg.printVector(avn.logit(z_v, 1)); std::vector> Z_m = { { 0.001 } }; alg.printMatrix(avn.logit(Z_m)); alg.printMatrix(avn.logit(Z_m, 1)); std::cout << alg.trace({ { 1, 2 }, { 3, 4 } }) << std::endl; alg.printMatrix(alg.pinverse({ { 1, 2 }, { 3, 4 } })); alg.printMatrix(alg.diag({ 1, 2, 3, 4, 5 })); alg.printMatrix(alg.kronecker_product({ { 1, 2, 3, 4, 5 } }, { { 6, 7, 8, 9, 10 } })); alg.printMatrix(alg.matrixPower({ { 5, 5 }, { 5, 5 } }, 2)); alg.printVector(alg.solve({ { 1, 1 }, { 1.5, 4.0 } }, { 2200, 5050 })); std::vector> matrixOfCubes = { { 1, 2, 64, 27 } }; std::vector vectorOfCubes = { 1, 2, 64, 27 }; alg.printMatrix(alg.cbrt(matrixOfCubes)); alg.printVector(alg.cbrt(vectorOfCubes)); std::cout << alg.max({ { 1, 2, 3, 4, 5 }, { 6, 5, 3, 4, 1 }, { 9, 9, 9, 9, 9 } }) << std::endl; std::cout << alg.min({ { 1, 2, 3, 4, 5 }, { 6, 5, 3, 4, 1 }, { 9, 9, 9, 9, 9 } }) << std::endl; //std::vector chicken; //data.getImage("../../Data/apple.jpeg", chicken); //alg.printVector(chicken); std::vector> P = { { 12, -51, 4 }, { 6, 167, -68 }, { -4, 24, -41 } }; alg.printMatrix(P); alg.printMatrix(alg.gramSchmidtProcess(P)); MLPPLinAlg::QRDResult qrd_result = alg.qrd(P); // It works! alg.printMatrix(qrd_result.Q); alg.printMatrix(qrd_result.R); } void MLPPTests::test_positive_definiteness_checker() { //MLPPStat stat; MLPPLinAlg alg; //MLPPActivation avn; //MLPPCost cost; //MLPPData data; //MLPPConvolutions conv; // Checking positive-definiteness checker. For Cholesky Decomp. std::vector> A = { { 1, -1, -1, -1 }, { -1, 2, 2, 2 }, { -1, 2, 3, 1 }, { -1, 2, 1, 4 } }; std::cout << std::boolalpha << alg.positiveDefiniteChecker(A) << std::endl; MLPPLinAlg::CholeskyResult chres = alg.cholesky(A); // works. alg.printMatrix(chres.L); alg.printMatrix(chres.Lt); } // real_t f(real_t x){ // return x*x*x + 2*x - 2; // } real_t f(real_t x) { return sin(x); } real_t f_prime(real_t x) { return 2 * x; } real_t f_prime_2var(std::vector x) { return 2 * x[0] + x[1]; } /* y = x^3 + 2x - 2 y' = 3x^2 + 2 y'' = 6x y''(2) = 12 */ // real_t f_mv(std::vector x){ // return x[0] * x[0] + x[0] * x[1] * x[1] + x[1] + 5; // } /* Where x, y = x[0], x[1], this function is defined as: f(x, y) = x^2 + xy^2 + y + 5 ∂f/∂x = 2x + 2y ∂^2f/∂x∂y = 2 */ real_t f_mv(std::vector x) { return x[0] * x[0] * x[0] + x[0] + x[1] * x[1] * x[1] * x[0] + x[2] * x[2] * x[1]; } /* Where x, y = x[0], x[1], this function is defined as: f(x, y) = x^3 + x + xy^3 + yz^2 fy = 3xy^2 + 2yz fyy = 6xy + 2z fyyz = 2 ∂^2f/∂y^2 = 6xy + 2z ∂^3f/∂y^3 = 6x ∂f/∂z = 2zy ∂^2f/∂z^2 = 2y ∂^3f/∂z^3 = 0 ∂f/∂x = 3x^2 + 1 + y^3 ∂^2f/∂x^2 = 6x ∂^3f/∂x^3 = 6 ∂f/∂z = 2zy ∂^2f/∂z^2 = 2z ∂f/∂y = 3xy^2 ∂^2f/∂y∂x = 3y^2 */ void MLPPTests::test_numerical_analysis() { MLPPLinAlg alg; MLPPConvolutions conv; // Checks for numerical analysis class. MLPPNumericalAnalysisOld numAn; std::cout << numAn.quadraticApproximation(f, 0, 1) << std::endl; std::cout << numAn.cubicApproximation(f, 0, 1.001) << std::endl; std::cout << f(1.001) << std::endl; std::cout << numAn.quadraticApproximation(f_mv, { 0, 0, 0 }, { 1, 1, 1 }) << std::endl; std::cout << numAn.numDiff(&f, 1) << std::endl; std::cout << numAn.newtonRaphsonMethod(&f, 1, 1000) << std::endl; std::cout << numAn.invQuadraticInterpolation(&f, { 100, 2, 1.5 }, 10) << std::endl; std::cout << numAn.numDiff(&f_mv, { 1, 1 }, 1) << std::endl; // Derivative w.r.t. x. alg.printVector(numAn.jacobian(&f_mv, { 1, 1 })); std::cout << numAn.numDiff_2(&f, 2) << std::endl; std::cout << numAn.numDiff_3(&f, 2) << std::endl; std::cout << numAn.numDiff_2(&f_mv, { 2, 2, 500 }, 2, 2) << std::endl; std::cout << numAn.numDiff_3(&f_mv, { 2, 1000, 130 }, 0, 0, 0) << std::endl; alg.printTensor(numAn.thirdOrderTensor(&f_mv, { 1, 1, 1 })); std::cout << "Our Hessian." << std::endl; alg.printMatrix(numAn.hessian(&f_mv, { 2, 2, 500 })); std::cout << numAn.laplacian(f_mv, { 1, 1, 1 }) << std::endl; std::vector>> tensor; tensor.push_back({ { 1, 2 }, { 1, 2 }, { 1, 2 } }); tensor.push_back({ { 1, 2 }, { 1, 2 }, { 1, 2 } }); alg.printTensor(tensor); alg.printMatrix(alg.tensor_vec_mult(tensor, { 1, 2 })); std::cout << numAn.cubicApproximation(f_mv, { 0, 0, 0 }, { 1, 1, 1 }) << std::endl; std::cout << numAn.eulerianMethod(f_prime, { 1, 1 }, 1.5, 0.000001) << std::endl; std::cout << numAn.eulerianMethod(f_prime_2var, { 2, 3 }, 2.5, 0.00000001) << std::endl; std::vector> A = { { 1, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 1 } }; alg.printMatrix(conv.dx(A)); alg.printMatrix(conv.dy(A)); alg.printMatrix(conv.grad_orientation(A)); std::vector> h = conv.harris_corner_detection(A); for (uint32_t i = 0; i < h.size(); i++) { for (uint32_t j = 0; j < h[i].size(); j++) { std::cout << h[i][j] << " "; } std::cout << std::endl; } // Harris detector works. Life is good! std::vector a = { 3, 4, 4 }; std::vector b = { 4, 4, 4 }; alg.printVector(alg.cross(a, b)); } void MLPPTests::test_support_vector_classification_kernel(bool ui) { MLPPLinAlg alg; MLPPData data; //SUPPORT VECTOR CLASSIFICATION (kernel method) Ref dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path); MLPPDualSVCOld kernelSVMOld(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1000); kernelSVMOld.gradientDescent(0.0001, 20, ui); std::cout << "SCORE: " << kernelSVMOld.score() << std::endl; MLPPDualSVC kernelSVM(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1000); kernelSVM.gradient_descent(0.0001, 20, ui); std::cout << "SCORE: " << kernelSVM.score() << std::endl; std::vector> linearlyIndependentMat = { { 1, 2, 3, 4 }, { 2345384, 4444, 6111, 55 } }; std::cout << "True of false: linearly independent?: " << std::boolalpha << alg.linearIndependenceChecker(linearlyIndependentMat) << std::endl; } void MLPPTests::test_mlpp_vector() { std::vector a = { 4, 3, 1, 3 }; Ref rv; rv.instance(); rv->set_from_std_vector(a); Ref rv2; rv2.instance(); rv2->set_from_std_vector(a); is_approx_equals_vec(rv, rv2, "set_from_std_vectors test."); rv2->set_from_std_vector(a); is_approx_equals_vec(rv, rv2, "re-set_from_std_vectors test."); } void MLPPTests::test_mlpp_matrix() { std::vector> A = { { 1, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 } }; Ref rmat; rmat.instance(); rmat->set_from_std_vectors(A); Ref rmat2; rmat2.instance(); rmat2->set_from_std_vectors(A); is_approx_equals_mat(rmat, rmat2, "set_from_std_vectors test."); rmat2->set_from_std_vectors(A); is_approx_equals_mat(rmat, rmat2, "re-set_from_std_vectors test."); } void MLPPTests::is_approx_equalsd(real_t a, real_t b, const String &str) { if (!Math::is_equal_approx(a, b)) { ERR_PRINT("TEST FAILED: " + str + " Got: " + String::num(a) + " Should be: " + String::num(b)); } } void MLPPTests::is_approx_equals_dvec(const Vector &a, const Vector &b, const String &str) { if (a.size() != b.size()) { goto IAEDVEC_FAILED; } for (int i = 0; i < a.size(); ++i) { if (!Math::is_equal_approx(a[i], b[i])) { goto IAEDVEC_FAILED; } } return; IAEDVEC_FAILED: String fail_str = "TEST FAILED: "; fail_str += str; fail_str += " Got: [ "; for (int i = 0; i < a.size(); ++i) { fail_str += String::num(a[i]); fail_str += " "; } fail_str += "] Should be: [ "; for (int i = 0; i < b.size(); ++i) { fail_str += String::num(b[i]); fail_str += " "; } fail_str += "]."; ERR_PRINT(fail_str); } String vmat_to_str(const Vector> &a) { String str; str += "[ \n"; for (int i = 0; i < a.size(); ++i) { str += " [ "; const Vector &aa = a[i]; for (int j = 0; j < aa.size(); ++j) { str += String::num(aa[j]); str += " "; } str += "]\n"; } str += "]\n"; return str; } void MLPPTests::is_approx_equals_dmat(const Vector> &a, const Vector> &b, const String &str) { if (a.size() != b.size()) { goto IAEDMAT_FAILED; } for (int i = 0; i < a.size(); ++i) { const Vector &aa = a[i]; const Vector &bb = b[i]; if (aa.size() != bb.size()) { goto IAEDMAT_FAILED; } for (int j = 0; j < aa.size(); ++j) { if (!Math::is_equal_approx(aa[j], bb[j])) { goto IAEDMAT_FAILED; } } } return; IAEDMAT_FAILED: String fail_str = "TEST FAILED: "; fail_str += str; fail_str += "\nGot:\n"; fail_str += vmat_to_str(a); fail_str += "Should be:\n"; fail_str += vmat_to_str(b); ERR_PRINT(fail_str); } void MLPPTests::is_approx_equals_mat(Ref a, Ref b, const String &str) { ERR_FAIL_COND(!a.is_valid()); ERR_FAIL_COND(!b.is_valid()); int ds = a->data_size(); const real_t *aa = a->ptr(); const real_t *bb = b->ptr(); if (a->size() != b->size()) { goto IAEMAT_FAILED; } ERR_FAIL_COND(!aa); ERR_FAIL_COND(!bb); for (int i = 0; i < ds; ++i) { if (!Math::is_equal_approx(aa[i], bb[i])) { goto IAEMAT_FAILED; } } return; IAEMAT_FAILED: String fail_str = "TEST FAILED: "; fail_str += str; fail_str += "\nGot:\n"; fail_str += a->to_string(); fail_str += "\nShould be:\n"; fail_str += b->to_string(); ERR_PRINT(fail_str); } void MLPPTests::is_approx_equals_vec(Ref a, Ref b, const String &str) { ERR_FAIL_COND(!a.is_valid()); ERR_FAIL_COND(!b.is_valid()); if (a->size() != b->size()) { goto IAEDVEC_FAILED; } for (int i = 0; i < a->size(); ++i) { if (!Math::is_equal_approx(a->get_element(i), b->get_element(i))) { goto IAEDVEC_FAILED; } } return; IAEDVEC_FAILED: String fail_str = "TEST FAILED: "; fail_str += str; fail_str += "\nGot:\n"; fail_str += a->to_string(); fail_str += "\nShould be:\n"; fail_str += b->to_string(); fail_str += "\n."; ERR_PRINT(fail_str); } MLPPTests::MLPPTests() { _breast_cancer_data_path = "res://datasets/BreastCancer.csv"; _breast_cancer_svm_data_path = "res://datasets/BreastCancerSVM.csv"; _california_housing_data_path = "res://datasets/CaliforniaHousing.csv"; _fires_and_crime_data_path = "res://datasets/FiresAndCrime.csv"; _iris_data_path = "res://datasets/Iris.csv"; _mnist_test_data_path = "res://datasets/MnistTest.csv"; _mnist_train_data_path = "res://datasets/MnistTrain.csv"; _wine_data_path = "res://datasets/Wine.csv"; } MLPPTests::~MLPPTests() { } void MLPPTests::_bind_methods() { ClassDB::bind_method(D_METHOD("test_statistics"), &MLPPTests::test_statistics); ClassDB::bind_method(D_METHOD("test_linear_algebra"), &MLPPTests::test_linear_algebra); ClassDB::bind_method(D_METHOD("test_univariate_linear_regression"), &MLPPTests::test_univariate_linear_regression); ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_gradient_descent", "ui"), &MLPPTests::test_multivariate_linear_regression_gradient_descent, false); ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_sgd", "ui"), &MLPPTests::test_multivariate_linear_regression_sgd, false); ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_mbgd", "ui"), &MLPPTests::test_multivariate_linear_regression_mbgd, false); ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_normal_equation", "ui"), &MLPPTests::test_multivariate_linear_regression_normal_equation, false); ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_adam"), &MLPPTests::test_multivariate_linear_regression_adam); ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_score_sgd_adam", "ui"), &MLPPTests::test_multivariate_linear_regression_score_sgd_adam, false); ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_epochs_gradient_descent", "ui"), &MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent, false); ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_newton_raphson", "ui"), &MLPPTests::test_multivariate_linear_regression_newton_raphson, false); ClassDB::bind_method(D_METHOD("test_logistic_regression", "ui"), &MLPPTests::test_logistic_regression, false); ClassDB::bind_method(D_METHOD("test_probit_regression", "ui"), &MLPPTests::test_probit_regression, false); ClassDB::bind_method(D_METHOD("test_c_log_log_regression", "ui"), &MLPPTests::test_c_log_log_regression, false); ClassDB::bind_method(D_METHOD("test_exp_reg_regression", "ui"), &MLPPTests::test_exp_reg_regression, false); ClassDB::bind_method(D_METHOD("test_tanh_regression", "ui"), &MLPPTests::test_tanh_regression, false); ClassDB::bind_method(D_METHOD("test_softmax_regression", "ui"), &MLPPTests::test_softmax_regression, false); ClassDB::bind_method(D_METHOD("test_support_vector_classification", "ui"), &MLPPTests::test_support_vector_classification, false); ClassDB::bind_method(D_METHOD("test_mlp", "ui"), &MLPPTests::test_mlp, false); ClassDB::bind_method(D_METHOD("test_soft_max_network", "ui"), &MLPPTests::test_soft_max_network, false); ClassDB::bind_method(D_METHOD("test_autoencoder", "ui"), &MLPPTests::test_autoencoder, false); ClassDB::bind_method(D_METHOD("test_dynamically_sized_ann", "ui"), &MLPPTests::test_dynamically_sized_ann, false); ClassDB::bind_method(D_METHOD("test_wgan_old", "ui"), &MLPPTests::test_wgan_old, false); ClassDB::bind_method(D_METHOD("test_wgan", "ui"), &MLPPTests::test_wgan, false); ClassDB::bind_method(D_METHOD("test_ann", "ui"), &MLPPTests::test_ann, false); ClassDB::bind_method(D_METHOD("test_dynamically_sized_mann", "ui"), &MLPPTests::test_dynamically_sized_mann, false); ClassDB::bind_method(D_METHOD("test_train_test_split_mann", "ui"), &MLPPTests::test_train_test_split_mann, false); ClassDB::bind_method(D_METHOD("test_naive_bayes"), &MLPPTests::test_naive_bayes); ClassDB::bind_method(D_METHOD("test_k_means", "ui"), &MLPPTests::test_k_means, false); ClassDB::bind_method(D_METHOD("test_knn", "ui"), &MLPPTests::test_knn, false); ClassDB::bind_method(D_METHOD("test_convolution_tensors_etc"), &MLPPTests::test_convolution_tensors_etc); ClassDB::bind_method(D_METHOD("test_pca_svd_eigenvalues_eigenvectors", "ui"), &MLPPTests::test_pca_svd_eigenvalues_eigenvectors, false); ClassDB::bind_method(D_METHOD("test_nlp_and_data", "ui"), &MLPPTests::test_nlp_and_data, false); ClassDB::bind_method(D_METHOD("test_outlier_finder", "ui"), &MLPPTests::test_outlier_finder, false); ClassDB::bind_method(D_METHOD("test_new_math_functions"), &MLPPTests::test_new_math_functions); ClassDB::bind_method(D_METHOD("test_positive_definiteness_checker"), &MLPPTests::test_positive_definiteness_checker); ClassDB::bind_method(D_METHOD("test_numerical_analysis"), &MLPPTests::test_numerical_analysis); ClassDB::bind_method(D_METHOD("test_support_vector_classification_kernel", "ui"), &MLPPTests::test_support_vector_classification_kernel, false); ClassDB::bind_method(D_METHOD("test_mlpp_vector"), &MLPPTests::test_mlpp_vector); ClassDB::bind_method(D_METHOD("test_mlpp_matrix"), &MLPPTests::test_mlpp_matrix); }