// // NumericalAnalysis.cpp // // Created by Marc Melikyan on 11/13/20. // #include "numerical_analysis.h" #include "../lin_alg/lin_alg.h" #include <climits> #include <cmath> #include <iostream> #include <string> /* real_t MLPPNumericalAnalysis::numDiff(real_t (*function)(real_t), real_t x) { real_t eps = 1e-10; return (function(x + eps) - function(x)) / eps; // This is just the formal def. of the derivative. } real_t MLPPNumericalAnalysis::numDiff_2(real_t (*function)(real_t), real_t x) { real_t eps = 1e-5; return (function(x + 2 * eps) - 2 * function(x + eps) + function(x)) / (eps * eps); } real_t MLPPNumericalAnalysis::numDiff_3(real_t (*function)(real_t), real_t x) { real_t eps = 1e-5; real_t t1 = function(x + 3 * eps) - 2 * function(x + 2 * eps) + function(x + eps); real_t t2 = function(x + 2 * eps) - 2 * function(x + eps) + function(x); return (t1 - t2) / (eps * eps * eps); } real_t MLPPNumericalAnalysis::constantApproximation(real_t (*function)(real_t), real_t c) { return function(c); } real_t MLPPNumericalAnalysis::linearApproximation(real_t (*function)(real_t), real_t c, real_t x) { return constantApproximation(function, c) + numDiff(function, c) * (x - c); } real_t MLPPNumericalAnalysis::quadraticApproximation(real_t (*function)(real_t), real_t c, real_t x) { return linearApproximation(function, c, x) + 0.5 * numDiff_2(function, c) * (x - c) * (x - c); } real_t MLPPNumericalAnalysis::cubicApproximation(real_t (*function)(real_t), real_t c, real_t x) { return quadraticApproximation(function, c, x) + (1 / 6) * numDiff_3(function, c) * (x - c) * (x - c) * (x - c); } real_t MLPPNumericalAnalysis::numDiff(real_t (*function)(std::vector<real_t>), std::vector<real_t> x, int axis) { // For multivariable function analysis. // This will be used for calculating Jacobian vectors. // Diffrentiate with respect to indicated axis. (0, 1, 2 ...) real_t eps = 1e-10; std::vector<real_t> x_eps = x; x_eps[axis] += eps; return (function(x_eps) - function(x)) / eps; } real_t MLPPNumericalAnalysis::numDiff_2(real_t (*function)(std::vector<real_t>), std::vector<real_t> x, int axis1, int axis2) { //For Hessians. real_t eps = 1e-5; std::vector<real_t> x_pp = x; x_pp[axis1] += eps; x_pp[axis2] += eps; std::vector<real_t> x_np = x; x_np[axis2] += eps; std::vector<real_t> x_pn = x; x_pn[axis1] += eps; return (function(x_pp) - function(x_np) - function(x_pn) + function(x)) / (eps * eps); } real_t MLPPNumericalAnalysis::numDiff_3(real_t (*function)(std::vector<real_t>), std::vector<real_t> x, int axis1, int axis2, int axis3) { // For third order derivative tensors. // NOTE: Approximations do not appear to be accurate for sinusodial functions... // Should revisit this later. real_t eps = 1e-5; std::vector<real_t> x_ppp = x; x_ppp[axis1] += eps; x_ppp[axis2] += eps; x_ppp[axis3] += eps; std::vector<real_t> x_npp = x; x_npp[axis2] += eps; x_npp[axis3] += eps; std::vector<real_t> x_pnp = x; x_pnp[axis1] += eps; x_pnp[axis3] += eps; std::vector<real_t> x_nnp = x; x_nnp[axis3] += eps; std::vector<real_t> x_ppn = x; x_ppn[axis1] += eps; x_ppn[axis2] += eps; std::vector<real_t> x_npn = x; x_npn[axis2] += eps; std::vector<real_t> x_pnn = x; x_pnn[axis1] += eps; real_t thirdAxis = function(x_ppp) - function(x_npp) - function(x_pnp) + function(x_nnp); real_t noThirdAxis = function(x_ppn) - function(x_npn) - function(x_pnn) + function(x); return (thirdAxis - noThirdAxis) / (eps * eps * eps); } real_t MLPPNumericalAnalysis::newtonRaphsonMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num) { real_t x = x_0; for (int i = 0; i < epoch_num; i++) { x -= function(x) / numDiff(function, x); } return x; } real_t MLPPNumericalAnalysis::halleyMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num) { real_t x = x_0; for (int i = 0; i < epoch_num; i++) { x -= ((2 * function(x) * numDiff(function, x)) / (2 * numDiff(function, x) * numDiff(function, x) - function(x) * numDiff_2(function, x))); } return x; } real_t MLPPNumericalAnalysis::invQuadraticInterpolation(real_t (*function)(real_t), std::vector<real_t> x_0, int epoch_num) { real_t x = 0; std::vector<real_t> currentThree = x_0; for (int i = 0; i < epoch_num; i++) { real_t t1 = ((function(currentThree[1]) * function(currentThree[2])) / ((function(currentThree[0]) - function(currentThree[1])) * (function(currentThree[0]) - function(currentThree[2])))) * currentThree[0]; real_t t2 = ((function(currentThree[0]) * function(currentThree[2])) / ((function(currentThree[1]) - function(currentThree[0])) * (function(currentThree[1]) - function(currentThree[2])))) * currentThree[1]; real_t t3 = ((function(currentThree[0]) * function(currentThree[1])) / ((function(currentThree[2]) - function(currentThree[0])) * (function(currentThree[2]) - function(currentThree[1])))) * currentThree[2]; x = t1 + t2 + t3; currentThree.erase(currentThree.begin()); currentThree.push_back(x); } return x; } real_t MLPPNumericalAnalysis::eulerianMethod(real_t (*derivative)(real_t), std::vector<real_t> q_0, real_t p, real_t h) { int max_epoch = static_cast<int>((p - q_0[0]) / h); real_t x = q_0[0]; real_t y = q_0[1]; for (int i = 0; i < max_epoch; i++) { y = y + h * derivative(x); x += h; } return y; } real_t MLPPNumericalAnalysis::eulerianMethod(real_t (*derivative)(std::vector<real_t>), std::vector<real_t> q_0, real_t p, real_t h) { int max_epoch = static_cast<int>((p - q_0[0]) / h); real_t x = q_0[0]; real_t y = q_0[1]; for (int i = 0; i < max_epoch; i++) { y = y + h * derivative({ x, y }); x += h; } return y; } real_t MLPPNumericalAnalysis::growthMethod(real_t C, real_t k, real_t t) { //dP/dt = kP //dP/P = kdt //integral(1/P)dP = integral(k) dt //ln|P| = kt + C_initial //|P| = e^(kt + C_initial) //|P| = e^(C_initial) * e^(kt) //P = +/- e^(C_initial) * e^(kt) //P = C * e^(kt) // auto growthFunction = [&C, &k](real_t t) { return C * exp(k * t); }; return C * std::exp(k * t); } std::vector<real_t> MLPPNumericalAnalysis::jacobian(real_t (*function)(std::vector<real_t>), std::vector<real_t> x) { std::vector<real_t> jacobian; jacobian.resize(x.size()); for (uint32_t i = 0; i < jacobian.size(); i++) { jacobian[i] = numDiff(function, x, i); // Derivative w.r.t axis i evaluated at x. For all x_i. } return jacobian; } std::vector<std::vector<real_t>> MLPPNumericalAnalysis::hessian(real_t (*function)(std::vector<real_t>), std::vector<real_t> x) { std::vector<std::vector<real_t>> hessian; hessian.resize(x.size()); for (uint32_t i = 0; i < hessian.size(); i++) { hessian[i].resize(x.size()); } for (uint32_t i = 0; i < hessian.size(); i++) { for (uint32_t j = 0; j < hessian[i].size(); j++) { hessian[i][j] = numDiff_2(function, x, i, j); } } return hessian; } std::vector<std::vector<std::vector<real_t>>> MLPPNumericalAnalysis::thirdOrderTensor(real_t (*function)(std::vector<real_t>), std::vector<real_t> x) { std::vector<std::vector<std::vector<real_t>>> tensor; tensor.resize(x.size()); for (uint32_t i = 0; i < tensor.size(); i++) { tensor[i].resize(x.size()); for (uint32_t j = 0; j < tensor[i].size(); j++) { tensor[i][j].resize(x.size()); } } for (uint32_t i = 0; i < tensor.size(); i++) { // O(n^3) time complexity :( for (uint32_t j = 0; j < tensor[i].size(); j++) { for (uint32_t k = 0; k < tensor[i][j].size(); k++) tensor[i][j][k] = numDiff_3(function, x, i, j, k); } } return tensor; } real_t MLPPNumericalAnalysis::constantApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c) { return function(c); } real_t MLPPNumericalAnalysis::linearApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x) { MLPPLinAlg alg; return constantApproximation(function, c) + alg.matmult(alg.transpose({ jacobian(function, c) }), { alg.subtraction(x, c) })[0][0]; } real_t MLPPNumericalAnalysis::quadraticApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x) { MLPPLinAlg alg; return linearApproximation(function, c, x) + 0.5 * alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(hessian(function, c), alg.transpose({ alg.subtraction(x, c) })))[0][0]; } real_t MLPPNumericalAnalysis::cubicApproximation(real_t (*function)(std::vector<real_t>), std::vector<real_t> c, std::vector<real_t> x) { //Not completely sure as the literature seldom discusses the third order taylor approximation, //in particular for multivariate cases, but ostensibly, the matrix/tensor/vector multiplies //should look something like this: //(N x N x N) (N x 1) [tensor vector mult] => (N x N x 1) => (N x N) //Perform remaining multiplies as done for the 2nd order approximation. //Result is a scalar. MLPPLinAlg alg; std::vector<std::vector<real_t>> resultMat = alg.tensor_vec_mult(thirdOrderTensor(function, c), alg.subtraction(x, c)); real_t resultScalar = alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(resultMat, alg.transpose({ alg.subtraction(x, c) })))[0][0]; return quadraticApproximation(function, c, x) + (1 / 6) * resultScalar; } real_t MLPPNumericalAnalysis::laplacian(real_t (*function)(std::vector<real_t>), std::vector<real_t> x) { std::vector<std::vector<real_t>> hessian_matrix = hessian(function, x); real_t laplacian = 0; for (uint32_t i = 0; i < hessian_matrix.size(); i++) { laplacian += hessian_matrix[i][i]; // homogenous 2nd derivs w.r.t i, then i } return laplacian; } std::string MLPPNumericalAnalysis::secondPartialDerivativeTest(real_t (*function)(std::vector<real_t>), std::vector<real_t> x) { MLPPLinAlg alg; std::vector<std::vector<real_t>> hessianMatrix = hessian(function, x); // The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than // 2, and the calculations specific to the bivariate case are less computationally intensive. if (x.size() == 2) { real_t det = alg.det(hessianMatrix, hessianMatrix.size()); real_t secondDerivative = numDiff_2(function, x, 0, 0); if (secondDerivative > 0 && det > 0) { return "min"; } else if (secondDerivative < 0 && det > 0) { return "max"; } else if (det < 0) { return "saddle"; } else { return "test was inconclusive"; } } else { if (alg.positiveDefiniteChecker(hessianMatrix)) { return "min"; } else if (alg.negativeDefiniteChecker(hessianMatrix)) { return "max"; } else if (!alg.zeroEigenvalue(hessianMatrix)) { return "saddle"; } else { return "test was inconclusive"; } } } */ void MLPPNumericalAnalysis::_bind_methods() { }