#ifndef MLPP_SOFTMAX_REG_H #define MLPP_SOFTMAX_REG_H // // SoftmaxReg.hpp // // Created by Marc Melikyan on 10/2/20. // #include "core/math/math_defs.h" #include <string> #include <vector> class MLPPSoftmaxReg { public: MLPPSoftmaxReg(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); std::vector<real_t> modelTest(std::vector<real_t> x); std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X); void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); void SGD(real_t learning_rate, int max_epoch, bool UI = 1); void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); real_t score(); void save(std::string fileName); private: real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y); std::vector<std::vector<real_t>> Evaluate(std::vector<std::vector<real_t>> X); std::vector<real_t> Evaluate(std::vector<real_t> x); void forwardPass(); std::vector<std::vector<real_t>> inputSet; std::vector<std::vector<real_t>> outputSet; std::vector<std::vector<real_t>> y_hat; std::vector<std::vector<real_t>> weights; std::vector<real_t> bias; int n; int k; int n_class; // Regularization Params std::string reg; real_t lambda; real_t alpha; /* This is the controlling param for Elastic Net*/ }; #endif /* SoftmaxReg_hpp */