// // TanhReg.cpp // // Created by Marc Melikyan on 10/2/20. // #include "tanh_reg.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include MLPPTanhReg::MLPPTanhReg(std::vector> inputSet, std::vector outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k); bias = MLPPUtilities::biasInitialization(); } std::vector MLPPTanhReg::modelSetTest(std::vector> X) { return Evaluate(X); } real_t MLPPTanhReg::modelTest(std::vector x) { return Evaluate(x); } void MLPPTanhReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); std::vector error = alg.subtraction(y_hat, outputSet); weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.tanh(z, 1))))); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(z, 1))) / n; forwardPass(); // UI PORTION if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); MLPPUtilities::UI(weights, bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPTanhReg::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; while (true) { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); real_t y_hat = Evaluate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); real_t error = y_hat - outputSet[outputIndex]; // Weight Updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * (1 - y_hat * y_hat), inputSet[outputIndex])); weights = regularization.regWeights(weights, lambda, alpha, reg); // Bias updation bias -= learning_rate * error * (1 - y_hat * y_hat); y_hat = Evaluate({ inputSet[outputIndex] }); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] })); MLPPUtilities::UI(weights, bias); } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } void MLPPTanhReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = Evaluate(inputMiniBatches[i]); std::vector z = propagate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.tanh(z, 1))))); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(z, 1))) / n; forwardPass(); y_hat = Evaluate(inputMiniBatches[i]); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i])); MLPPUtilities::UI(weights, bias); } } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } real_t MLPPTanhReg::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } void MLPPTanhReg::save(std::string fileName) { MLPPUtilities util; util.saveParameters(fileName, weights, bias); } real_t MLPPTanhReg::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } std::vector MLPPTanhReg::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return avn.tanh(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); } std::vector MLPPTanhReg::propagate(std::vector> X) { MLPPLinAlg alg; return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); } real_t MLPPTanhReg::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return avn.tanh(alg.dot(weights, x) + bias); } real_t MLPPTanhReg::propagate(std::vector x) { MLPPLinAlg alg; return alg.dot(weights, x) + bias; } // Tanh ( wTx + b ) void MLPPTanhReg::forwardPass() { MLPPLinAlg alg; MLPPActivation avn; z = propagate(inputSet); y_hat = avn.tanh(z); }