#ifndef MLPP_GAN_H #define MLPP_GAN_H // // GAN.hpp // // Created by Marc Melikyan on 11/4/20. // #include "core/math/math_defs.h" #include "core/object/reference.h" #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" #include "../lin_alg/mlpp_tensor3.h" #include "../activation/activation.h" #include "../utilities/utilities.h" class MLPPGAN : public Reference { GDCLASS(MLPPGAN, Reference); public: /* Ref<MLPPMatrix> get_input_set(); void set_input_set(const Ref<MLPPMatrix> &val); Ref<MLPPVector> get_output_set(); void set_output_set(const Ref<MLPPVector> &val); int get_k(); void set_k(const int val); */ Ref<MLPPMatrix> generate_example(int n); void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); real_t score(); void save(const String &file_name); void add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); void add_output_layer(MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); MLPPGAN(real_t k, const Ref<MLPPMatrix> &output_set); MLPPGAN(); ~MLPPGAN(); protected: Ref<MLPPMatrix> model_set_test_generator(const Ref<MLPPMatrix> &X); // Evaluator for the generator of the gan. Ref<MLPPVector> model_set_test_discriminator(const Ref<MLPPMatrix> &X); // Evaluator for the discriminator of the gan. real_t cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y); void forward_pass(); void update_discriminator_parameters(const Ref<MLPPTensor3> &hidden_layer_updations, const Ref<MLPPVector> &output_layer_updation, real_t learning_rate); void update_generator_parameters(const Ref<MLPPTensor3> &hidden_layer_updations, real_t learning_rate); struct ComputeDiscriminatorGradientsResult { Ref<MLPPTensor3> cumulative_hidden_layer_w_grad; // Tensor containing ALL hidden grads. Ref<MLPPVector> output_w_grad; ComputeDiscriminatorGradientsResult() { cumulative_hidden_layer_w_grad.instance(); output_w_grad.instance(); } }; ComputeDiscriminatorGradientsResult compute_discriminator_gradients(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set); Ref<MLPPTensor3> compute_generator_gradients(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set); void print_ui(int epoch, real_t cost_prev, const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set); static void _bind_methods(); Ref<MLPPMatrix> _output_set; Ref<MLPPVector> _y_hat; Vector<Ref<MLPPHiddenLayer>> _network; Ref<MLPPOutputLayer> _output_layer; int _n; int _k; }; #endif /* GAN_hpp */