// // SoftmaxNet.hpp // // Created by Marc Melikyan on 10/2/20. // #ifndef MLPP_SOFTMAX_NET_H #define MLPP_SOFTMAX_NET_H #include #include namespace MLPP { class SoftmaxNet{ public: SoftmaxNet(std::vector> inputSet, std::vector> outputSet, int n_hidden, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); std::vector modelTest(std::vector x); std::vector> modelSetTest(std::vector> X); void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); void SGD(double learning_rate, int max_epoch, bool UI = 1); void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); double score(); void save(std::string fileName); std::vector> getEmbeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings. private: double Cost(std::vector> y_hat, std::vector> y); std::vector> Evaluate(std::vector> X); std::tuple>, std::vector>> propagate(std::vector> X); std::vector Evaluate(std::vector x); std::tuple, std::vector> propagate(std::vector x); void forwardPass(); std::vector> inputSet; std::vector> outputSet; std::vector> y_hat; std::vector> weights1; std::vector> weights2; std::vector bias1; std::vector bias2; std::vector> z2; std::vector> a2; int n; int k; int n_class; int n_hidden; // Regularization Params std::string reg; double lambda; double alpha; /* This is the controlling param for Elastic Net*/ }; } #endif /* SoftmaxNet_hpp */