// // PCA.cpp // // Created by Marc Melikyan on 10/2/20. // #include "pca.h" #include "../lin_alg/lin_alg.h" #include "../data/data.h" #include #include namespace MLPP{ PCA::PCA(std::vector> inputSet, int k) : inputSet(inputSet), k(k) { } std::vector> PCA::principalComponents(){ LinAlg alg; Data data; auto [U, S, Vt] = alg.SVD(alg.cov(inputSet)); X_normalized = data.meanCentering(inputSet); U_reduce.resize(U.size()); for(int i = 0; i < k; i++){ for(int j = 0; j < U.size(); j++){ U_reduce[j].push_back(U[j][i]); } } Z = alg.matmult(alg.transpose(U_reduce), X_normalized); return Z; } // Simply tells us the percentage of variance maintained. double PCA::score(){ LinAlg alg; std::vector> X_approx = alg.matmult(U_reduce, Z); double num, den = 0; for(int i = 0; i < X_normalized.size(); i++){ num += alg.norm_sq(alg.subtraction(X_normalized[i], X_approx[i])); } num /= X_normalized.size(); for(int i = 0; i < X_normalized.size(); i++){ den += alg.norm_sq(X_normalized[i]); } den /= X_normalized.size(); if(den == 0){ den+=1e-10; // For numerical sanity as to not recieve a domain error } return 1 - num/den; } }