#include "mlpp_tensor3.h" #include "core/io/image.h" Array MLPPTensor3::get_data() { PoolRealArray pl; int ds = data_size(); if (ds) { pl.resize(ds); PoolRealArray::Write w = pl.write(); real_t *dest = w.ptr(); for (int i = 0; i < ds; ++i) { dest[i] = _data[i]; } } Array arr; arr.push_back(size()); arr.push_back(pl); return arr; } void MLPPTensor3::set_data(const Array &p_from) { if (p_from.size() != 2) { return; } Size3i s = p_from[0]; PoolRealArray pl = p_from[1]; int ds = s.x * s.y * s.z; if (ds != pl.size()) { return; } if (_size != s) { resize(s); } PoolRealArray::Read r = pl.read(); for (int i = 0; i < ds; ++i) { _data[i] = r[i]; } } void MLPPTensor3::z_slice_add(const Vector &p_row) { if (p_row.size() == 0) { return; } int fms = z_slice_data_size(); ERR_FAIL_COND(fms != p_row.size()); int ci = data_size(); ++_size.z; _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); const real_t *row_arr = p_row.ptr(); for (int i = 0; i < p_row.size(); ++i) { _data[ci + i] = row_arr[i]; } } void MLPPTensor3::z_slice_add_pool_vector(const PoolRealArray &p_row) { if (p_row.size() == 0) { return; } int fms = z_slice_data_size(); ERR_FAIL_COND(fms != p_row.size()); int ci = data_size(); ++_size.z; _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); PoolRealArray::Read rread = p_row.read(); const real_t *row_arr = rread.ptr(); for (int i = 0; i < p_row.size(); ++i) { _data[ci + i] = row_arr[i]; } } void MLPPTensor3::z_slice_add_mlpp_vector(const Ref &p_row) { ERR_FAIL_COND(!p_row.is_valid()); int p_row_size = p_row->size(); if (p_row_size == 0) { return; } int fms = z_slice_data_size(); ERR_FAIL_COND(fms != p_row_size); int ci = data_size(); ++_size.z; _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); const real_t *row_ptr = p_row->ptr(); for (int i = 0; i < p_row_size; ++i) { _data[ci + i] = row_ptr[i]; } } void MLPPTensor3::z_slice_add_mlpp_matrix(const Ref &p_matrix) { ERR_FAIL_COND(!p_matrix.is_valid()); int other_data_size = p_matrix->data_size(); if (other_data_size == 0) { return; } Size2i matrix_size = p_matrix->size(); Size2i fms = z_slice_size(); ERR_FAIL_COND(fms != matrix_size); int start_offset = data_size(); ++_size.z; _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); const real_t *other_ptr = p_matrix->ptr(); for (int i = 0; i < other_data_size; ++i) { _data[start_offset + i] = other_ptr[i]; } } void MLPPTensor3::z_slice_remove(int p_index) { ERR_FAIL_INDEX(p_index, _size.z); --_size.z; int ds = data_size(); if (ds == 0) { memfree(_data); _data = NULL; return; } int fmds = z_slice_data_size(); for (int i = calculate_z_slice_index(p_index); i < ds; ++i) { _data[i] = _data[i + fmds]; } _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } // Removes the item copying the last value into the position of the one to // remove. It's generally faster than `remove`. void MLPPTensor3::z_slice_remove_unordered(int p_index) { ERR_FAIL_INDEX(p_index, _size.z); --_size.z; int ds = data_size(); if (ds == 0) { memfree(_data); _data = NULL; return; } int start_ind = calculate_z_slice_index(p_index); int end_ind = calculate_z_slice_index(p_index + 1); for (int i = start_ind; i < end_ind; ++i) { _data[i] = _data[ds + i]; } _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } void MLPPTensor3::z_slice_swap(int p_index_1, int p_index_2) { ERR_FAIL_INDEX(p_index_1, _size.z); ERR_FAIL_INDEX(p_index_2, _size.z); int ind1_start = calculate_z_slice_index(p_index_1); int ind2_start = calculate_z_slice_index(p_index_2); int fmds = z_slice_data_size(); for (int i = 0; i < fmds; ++i) { SWAP(_data[ind1_start + i], _data[ind2_start + i]); } } void MLPPTensor3::resize(const Size3i &p_size) { _size = p_size; int ds = data_size(); if (ds == 0) { if (_data) { memfree(_data); _data = NULL; } return; } _data = (real_t *)memrealloc(_data, ds * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } void MLPPTensor3::shape_set(const Size3i &p_size) { int ds = data_size(); int new_data_size = p_size.x * p_size.y * p_size.z; ERR_FAIL_COND_MSG(ds != new_data_size, "The new size has a different volume than the old. If this is intended use resize()!"); _size = p_size; } Vector MLPPTensor3::row_get_vector(int p_index_z, int p_index_y) const { ERR_FAIL_INDEX_V(p_index_y, _size.y, Vector()); ERR_FAIL_INDEX_V(p_index_z, _size.z, Vector()); Vector ret; if (unlikely(_size.x == 0)) { return ret; } ret.resize(_size.x); int ind_start = p_index_y * _size.x; real_t *row_ptr = ret.ptrw(); for (int i = 0; i < _size.x; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } PoolRealArray MLPPTensor3::row_get_pool_vector(int p_index_z, int p_index_y) const { ERR_FAIL_INDEX_V(p_index_y, _size.y, PoolRealArray()); ERR_FAIL_INDEX_V(p_index_z, _size.z, PoolRealArray()); PoolRealArray ret; if (unlikely(_size.x == 0)) { return ret; } ret.resize(_size.x); int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z; PoolRealArray::Write w = ret.write(); real_t *row_ptr = w.ptr(); for (int i = 0; i < _size.x; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } Ref MLPPTensor3::row_get_mlpp_vector(int p_index_z, int p_index_y) const { ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref()); ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref()); Ref ret; ret.instance(); if (unlikely(_size.x == 0)) { return ret; } ret->resize(_size.x); int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z; real_t *row_ptr = ret->ptrw(); for (int i = 0; i < _size.x; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } void MLPPTensor3::row_get_into_mlpp_vector(int p_index_z, int p_index_y, Ref target) const { ERR_FAIL_COND(!target.is_valid()); ERR_FAIL_INDEX(p_index_y, _size.y); ERR_FAIL_INDEX(p_index_z, _size.z); if (unlikely(target->size() != _size.x)) { target->resize(_size.x); } int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z; real_t *row_ptr = target->ptrw(); for (int i = 0; i < _size.x; ++i) { row_ptr[i] = _data[ind_start + i]; } } void MLPPTensor3::row_set_vector(int p_index_z, int p_index_y, const Vector &p_row) { ERR_FAIL_COND(p_row.size() != _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); ERR_FAIL_INDEX(p_index_z, _size.z); int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z; const real_t *row_ptr = p_row.ptr(); for (int i = 0; i < _size.x; ++i) { _data[ind_start + i] = row_ptr[i]; } } void MLPPTensor3::row_set_pool_vector(int p_index_z, int p_index_y, const PoolRealArray &p_row) { ERR_FAIL_COND(p_row.size() != _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); ERR_FAIL_INDEX(p_index_z, _size.z); int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z; PoolRealArray::Read r = p_row.read(); const real_t *row_ptr = r.ptr(); for (int i = 0; i < _size.x; ++i) { _data[ind_start + i] = row_ptr[i]; } } void MLPPTensor3::row_set_mlpp_vector(int p_index_z, int p_index_y, const Ref &p_row) { ERR_FAIL_COND(!p_row.is_valid()); ERR_FAIL_COND(p_row->size() != _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); ERR_FAIL_INDEX(p_index_z, _size.z); int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z; const real_t *row_ptr = p_row->ptr(); for (int i = 0; i < _size.x; ++i) { _data[ind_start + i] = row_ptr[i]; } } Vector MLPPTensor3::z_slice_get_vector(int p_index_z) const { ERR_FAIL_INDEX_V(p_index_z, _size.z, Vector()); Vector ret; int fmds = z_slice_data_size(); if (unlikely(fmds == 0)) { return ret; } ret.resize(fmds); int ind_start = calculate_z_slice_index(p_index_z); real_t *row_ptr = ret.ptrw(); for (int i = 0; i < fmds; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } PoolRealArray MLPPTensor3::z_slice_get_pool_vector(int p_index_z) const { ERR_FAIL_INDEX_V(p_index_z, _size.z, PoolRealArray()); PoolRealArray ret; int fmds = z_slice_data_size(); if (unlikely(fmds == 0)) { return ret; } ret.resize(fmds); int ind_start = calculate_z_slice_index(p_index_z); PoolRealArray::Write w = ret.write(); real_t *row_ptr = w.ptr(); for (int i = 0; i < fmds; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } Ref MLPPTensor3::z_slice_get_mlpp_vector(int p_index_z) const { ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref()); Ref ret; ret.instance(); int fmds = z_slice_data_size(); if (unlikely(fmds == 0)) { return ret; } ret->resize(fmds); int ind_start = calculate_z_slice_index(p_index_z); real_t *row_ptr = ret->ptrw(); for (int i = 0; i < fmds; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } void MLPPTensor3::z_slice_get_into_mlpp_vector(int p_index_z, Ref target) const { ERR_FAIL_INDEX(p_index_z, _size.z); int fmds = z_slice_data_size(); if (unlikely(target->size() != fmds)) { target->resize(fmds); } int ind_start = calculate_z_slice_index(p_index_z); real_t *row_ptr = target->ptrw(); for (int i = 0; i < fmds; ++i) { row_ptr[i] = _data[ind_start + i]; } } Ref MLPPTensor3::z_slice_get_mlpp_matrix(int p_index_z) const { ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref()); Ref ret; ret.instance(); int fmds = z_slice_data_size(); if (unlikely(fmds == 0)) { return ret; } ret->resize(z_slice_size()); int ind_start = calculate_z_slice_index(p_index_z); real_t *row_ptr = ret->ptrw(); for (int i = 0; i < fmds; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } void MLPPTensor3::z_slice_get_into_mlpp_matrix(int p_index_z, Ref target) const { ERR_FAIL_INDEX(p_index_z, _size.z); int fmds = z_slice_data_size(); Size2i fms = z_slice_size(); if (unlikely(target->size() != fms)) { target->resize(fms); } int ind_start = calculate_z_slice_index(p_index_z); real_t *row_ptr = target->ptrw(); for (int i = 0; i < fmds; ++i) { row_ptr[i] = _data[ind_start + i]; } } void MLPPTensor3::z_slice_set_vector(int p_index_z, const Vector &p_row) { ERR_FAIL_INDEX(p_index_z, _size.z); int fmds = z_slice_data_size(); ERR_FAIL_COND(p_row.size() != fmds); int ind_start = calculate_z_slice_index(p_index_z); const real_t *row_ptr = p_row.ptr(); for (int i = 0; i < fmds; ++i) { _data[ind_start + i] = row_ptr[i]; } } void MLPPTensor3::z_slice_set_pool_vector(int p_index_z, const PoolRealArray &p_row) { ERR_FAIL_INDEX(p_index_z, _size.z); int fmds = z_slice_data_size(); ERR_FAIL_COND(p_row.size() != fmds); int ind_start = calculate_z_slice_index(p_index_z); PoolRealArray::Read r = p_row.read(); const real_t *row_ptr = r.ptr(); for (int i = 0; i < fmds; ++i) { _data[ind_start + i] = row_ptr[i]; } } void MLPPTensor3::z_slice_set_mlpp_vector(int p_index_z, const Ref &p_row) { ERR_FAIL_INDEX(p_index_z, _size.z); ERR_FAIL_COND(!p_row.is_valid()); int fmds = z_slice_data_size(); ERR_FAIL_COND(p_row->size() != fmds); int ind_start = calculate_z_slice_index(p_index_z); const real_t *row_ptr = p_row->ptr(); for (int i = 0; i < fmds; ++i) { _data[ind_start + i] = row_ptr[i]; } } void MLPPTensor3::z_slice_set_mlpp_matrix(int p_index_z, const Ref &p_mat) { ERR_FAIL_INDEX(p_index_z, _size.z); ERR_FAIL_COND(!p_mat.is_valid()); int fmds = z_slice_data_size(); ERR_FAIL_COND(p_mat->size() != z_slice_size()); int ind_start = calculate_z_slice_index(p_index_z); const real_t *row_ptr = p_mat->ptr(); for (int i = 0; i < fmds; ++i) { _data[ind_start + i] = row_ptr[i]; } } void MLPPTensor3::x_slice_get_into(int p_index_x, Ref target) const { ERR_FAIL_INDEX(p_index_x, _size.x); ERR_FAIL_COND(!target.is_valid()); if (unlikely(target->size() != Size2i(_size.y, _size.z))) { target->resize(Size2i(_size.y, _size.z)); } for (int z = 0; z < _size.z; ++z) { for (int y = 0; y < _size.y; ++y) { target->element_set(z, y, element_get(z, p_index_x, y)); } } } Ref MLPPTensor3::x_slice_get(int p_index_x) const { ERR_FAIL_INDEX_V(p_index_x, _size.x, Ref()); Ref m; m.instance(); x_slice_get_into(p_index_x, m); return m; } void MLPPTensor3::x_slice_set(int p_index_x, const Ref &p_mat) { ERR_FAIL_INDEX(p_index_x, _size.x); ERR_FAIL_COND(!p_mat.is_valid()); ERR_FAIL_COND(p_mat->size() != Size2i(_size.y, _size.z)); for (int z = 0; z < _size.z; ++z) { for (int y = 0; y < _size.y; ++y) { element_set(z, p_index_x, y, p_mat->element_get(z, y)); } } } void MLPPTensor3::y_slice_get_into(int p_index_y, Ref target) const { ERR_FAIL_INDEX(p_index_y, _size.y); ERR_FAIL_COND(!target.is_valid()); if (unlikely(target->size() != Size2i(_size.y, _size.z))) { target->resize(Size2i(_size.x, _size.z)); } for (int z = 0; z < _size.z; ++z) { for (int x = 0; x < _size.x; ++x) { target->element_set(z, x, element_get(z, x, p_index_y)); } } } Ref MLPPTensor3::y_slice_get(int p_index_y) const { ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref()); Ref m; m.instance(); y_slice_get_into(p_index_y, m); return m; } void MLPPTensor3::y_slice_set(int p_index_y, const Ref &p_mat) { ERR_FAIL_INDEX(p_index_y, _size.y); ERR_FAIL_COND(!p_mat.is_valid()); ERR_FAIL_COND(p_mat->size() != Size2i(_size.y, _size.z)); for (int z = 0; z < _size.z; ++z) { for (int x = 0; x < _size.x; ++x) { element_set(z, x, p_index_y, p_mat->element_get(z, x)); } } } void MLPPTensor3::z_slices_add_image(const Ref &p_img, const int p_channels) { ERR_FAIL_COND(!p_img.is_valid()); Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); int channel_count = 0; int channels[4]; if (p_channels & IMAGE_CHANNEL_FLAG_R) { channels[channel_count] = 0; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_G) { channels[channel_count] = 1; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_B) { channels[channel_count] = 2; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_A) { channels[channel_count] = 3; ++channel_count; } ERR_FAIL_COND(channel_count == 0); if (unlikely(_size == Size3i())) { resize(Size3i(img_size.x, img_size.y, channel_count)); } Size2i fms = z_slice_size(); ERR_FAIL_COND(img_size != fms); int start_channel = _size.y; _size.y += channel_count; resize(_size); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, y); for (int i = 0; i < channel_count; ++i) { element_set(start_channel + i, y, x, c[channels[i]]); } } } img->unlock(); } Ref MLPPTensor3::z_slice_get_image(const int p_index_z) const { ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref()); Ref image; image.instance(); if (data_size() == 0) { return image; } PoolByteArray arr; int fmsi = calculate_z_slice_index(p_index_z); int fms = z_slice_data_size(); arr.resize(fms); PoolByteArray::Write w = arr.write(); uint8_t *wptr = w.ptr(); for (int i = 0; i < fms; ++i) { wptr[i] = static_cast(_data[fmsi + i] * 255.0); } image->create(_size.x, _size.y, false, Image::FORMAT_L8, arr); return image; } Ref MLPPTensor3::z_slices_get_image(const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) const { if (p_index_r != -1) { ERR_FAIL_INDEX_V(p_index_r, _size.z, Ref()); } if (p_index_g != -1) { ERR_FAIL_INDEX_V(p_index_g, _size.z, Ref()); } if (p_index_b != -1) { ERR_FAIL_INDEX_V(p_index_b, _size.z, Ref()); } if (p_index_a != -1) { ERR_FAIL_INDEX_V(p_index_a, _size.z, Ref()); } Ref image; image.instance(); if (data_size() == 0) { return image; } Size2i fms = z_slice_size(); image->create(_size.x, _size.y, false, Image::FORMAT_RGBA8); image->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c; if (p_index_r != -1) { c.r = element_get(p_index_r, y, x); } if (p_index_g != -1) { c.g = element_get(p_index_g, y, x); } if (p_index_b != -1) { c.b = element_get(p_index_b, y, x); } if (p_index_a != -1) { c.a = element_get(p_index_a, y, x); } image->set_pixel(x, y, c); } } image->unlock(); return image; } void MLPPTensor3::z_slice_get_into_image(Ref p_target, const int p_index_z, const int p_target_channels) const { ERR_FAIL_INDEX(p_index_z, _size.z); ERR_FAIL_COND(!p_target.is_valid()); int channel_count = 0; int channels[4]; if (p_target_channels & IMAGE_CHANNEL_FLAG_R) { channels[channel_count] = 0; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_G) { channels[channel_count] = 1; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_B) { channels[channel_count] = 2; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_A) { channels[channel_count] = 3; ++channel_count; } ERR_FAIL_COND(channel_count == 0); if (data_size() == 0) { p_target->clear(); return; } Size2i img_size = Size2i(p_target->get_width(), p_target->get_height()); Size2i fms = z_slice_size(); if (img_size != fms) { bool mip_maps = p_target->has_mipmaps(); p_target->resize(fms.x, fms.y, Image::INTERPOLATE_NEAREST); if (p_target->has_mipmaps() != mip_maps) { if (mip_maps) { p_target->generate_mipmaps(); } else { p_target->clear_mipmaps(); } } } p_target->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c; float e = element_get(p_index_z, y, x); for (int i = 0; i < channel_count; ++i) { c[channels[i]] = e; } p_target->set_pixel(x, y, c); } } p_target->unlock(); } void MLPPTensor3::z_slices_get_into_image(Ref p_target, const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) const { ERR_FAIL_COND(!p_target.is_valid()); if (p_index_r != -1) { ERR_FAIL_INDEX(p_index_r, _size.z); } if (p_index_g != -1) { ERR_FAIL_INDEX(p_index_g, _size.z); } if (p_index_b != -1) { ERR_FAIL_INDEX(p_index_b, _size.z); } if (p_index_a != -1) { ERR_FAIL_INDEX(p_index_a, _size.z); } if (data_size() == 0) { p_target->clear(); return; } Size2i img_size = Size2i(p_target->get_width(), p_target->get_height()); Size2i fms = z_slice_size(); if (img_size != fms) { bool mip_maps = p_target->has_mipmaps(); p_target->resize(fms.x, fms.y, Image::INTERPOLATE_NEAREST); if (p_target->has_mipmaps() != mip_maps) { if (mip_maps) { p_target->generate_mipmaps(); } else { p_target->clear_mipmaps(); } } } p_target->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c; if (p_index_r != -1) { c.r = element_get(p_index_r, y, x); } if (p_index_g != -1) { c.g = element_get(p_index_g, y, x); } if (p_index_b != -1) { c.b = element_get(p_index_b, y, x); } if (p_index_a != -1) { c.a = element_get(p_index_a, y, x); } p_target->set_pixel(x, y, c); } } p_target->unlock(); } void MLPPTensor3::z_slice_set_image(const Ref &p_img, const int p_index_z, const int p_image_channel_flag) { ERR_FAIL_COND(!p_img.is_valid()); ERR_FAIL_INDEX(p_index_z, _size.z); int channel_index = -1; for (int i = 0; i < 4; ++i) { if (((p_image_channel_flag & (1 << i)) != 0)) { channel_index = i; break; } } ERR_FAIL_INDEX(channel_index, 4); Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); Size2i fms = z_slice_size(); ERR_FAIL_COND(img_size != fms); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, y); element_set(p_index_z, y, x, c[channel_index]); } } img->unlock(); } void MLPPTensor3::z_slices_set_image(const Ref &p_img, const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) { ERR_FAIL_COND(!p_img.is_valid()); if (p_index_r != -1) { ERR_FAIL_INDEX(p_index_r, _size.z); } if (p_index_g != -1) { ERR_FAIL_INDEX(p_index_g, _size.z); } if (p_index_b != -1) { ERR_FAIL_INDEX(p_index_b, _size.z); } if (p_index_a != -1) { ERR_FAIL_INDEX(p_index_a, _size.z); } Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); Size2i fms = z_slice_size(); ERR_FAIL_COND(img_size != fms); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, y); if (p_index_r != -1) { element_set(p_index_r, y, x, c.r); } if (p_index_g != -1) { element_set(p_index_g, y, x, c.g); } if (p_index_b != -1) { element_set(p_index_b, y, x, c.b); } if (p_index_a != -1) { element_set(p_index_a, y, x, c.a); } } } img->unlock(); } void MLPPTensor3::set_from_image(const Ref &p_img, const int p_channels) { ERR_FAIL_COND(!p_img.is_valid()); int channel_count = 0; int channels[4]; if (p_channels & IMAGE_CHANNEL_FLAG_R) { channels[channel_count] = 0; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_G) { channels[channel_count] = 1; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_B) { channels[channel_count] = 2; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_A) { channels[channel_count] = 3; ++channel_count; } ERR_FAIL_COND(channel_count == 0); Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); resize(Size3i(img_size.x, img_size.y, channel_count)); Size2i fms = z_slice_size(); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, y); for (int i = 0; i < channel_count; ++i) { element_set(i, y, x, c[channels[i]]); } } } img->unlock(); } Ref MLPPTensor3::x_slice_get_image(const int p_index_x) const { ERR_FAIL_INDEX_V(p_index_x, _size.x, Ref()); Ref image; image.instance(); if (data_size() == 0) { return image; } PoolByteArray arr; arr.resize(_size.y * _size.z); PoolByteArray::Write w = arr.write(); uint8_t *wptr = w.ptr(); int i = 0; for (int z = 0; z < _size.z; ++z) { for (int y = 0; y < _size.y; ++y) { wptr[i] = static_cast(element_get(z, p_index_x, y) * 255.0); ++i; } } image->create(_size.y, _size.z, false, Image::FORMAT_L8, arr); return image; } void MLPPTensor3::x_slice_get_into_image(Ref p_target, const int p_index_x, const int p_target_channels) const { ERR_FAIL_INDEX(p_index_x, _size.x); ERR_FAIL_COND(!p_target.is_valid()); int channel_count = 0; int channels[4]; if (p_target_channels & IMAGE_CHANNEL_FLAG_R) { channels[channel_count] = 0; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_G) { channels[channel_count] = 1; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_B) { channels[channel_count] = 2; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_A) { channels[channel_count] = 3; ++channel_count; } ERR_FAIL_COND(channel_count == 0); if (data_size() == 0) { p_target->clear(); return; } Size2i img_size = Size2i(p_target->get_width(), p_target->get_height()); Size2i fms = Size2i(_size.y, _size.z); if (img_size != fms) { bool mip_maps = p_target->has_mipmaps(); p_target->resize(fms.x, fms.y, Image::INTERPOLATE_NEAREST); if (p_target->has_mipmaps() != mip_maps) { if (mip_maps) { p_target->generate_mipmaps(); } else { p_target->clear_mipmaps(); } } } p_target->lock(); for (int y = 0; y < fms.y; ++y) { for (int z = 0; z < fms.x; ++z) { Color c; float e = element_get(z, y, p_index_x); for (int i = 0; i < channel_count; ++i) { c[channels[i]] = e; } p_target->set_pixel(z, y, c); } } p_target->unlock(); } void MLPPTensor3::x_slice_set_image(const Ref &p_img, const int p_index_x, const int p_image_channel_flag) { ERR_FAIL_COND(!p_img.is_valid()); ERR_FAIL_INDEX(p_index_x, _size.x); int channel_index = -1; for (int i = 0; i < 4; ++i) { if (((p_image_channel_flag & (1 << i)) != 0)) { channel_index = i; break; } } ERR_FAIL_INDEX(channel_index, 4); Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); Size2i fms = Size2i(_size.y, _size.z); ERR_FAIL_COND(img_size != fms); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int z = 0; z < fms.x; ++z) { Color c = img->get_pixel(z, y); element_set(z, y, p_index_x, c[channel_index]); } } img->unlock(); } Ref MLPPTensor3::y_slice_get_image(const int p_index_y) const { ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref()); Ref image; image.instance(); if (data_size() == 0) { return image; } PoolByteArray arr; arr.resize(_size.x * _size.z); PoolByteArray::Write w = arr.write(); uint8_t *wptr = w.ptr(); int i = 0; for (int z = 0; z < _size.z; ++z) { for (int x = 0; x < _size.x; ++x) { wptr[i] = static_cast(element_get(z, x, p_index_y) * 255.0); ++i; } } image->create(_size.x, _size.z, false, Image::FORMAT_L8, arr); return image; } void MLPPTensor3::y_slice_get_into_image(Ref p_target, const int p_index_y, const int p_target_channels) const { ERR_FAIL_INDEX(p_index_y, _size.y); ERR_FAIL_COND(!p_target.is_valid()); int channel_count = 0; int channels[4]; if (p_target_channels & IMAGE_CHANNEL_FLAG_R) { channels[channel_count] = 0; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_G) { channels[channel_count] = 1; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_B) { channels[channel_count] = 2; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_A) { channels[channel_count] = 3; ++channel_count; } ERR_FAIL_COND(channel_count == 0); if (data_size() == 0) { p_target->clear(); return; } Size2i img_size = Size2i(p_target->get_width(), p_target->get_height()); Size2i fms = Size2i(_size.x, _size.z); if (img_size != fms) { bool mip_maps = p_target->has_mipmaps(); p_target->resize(fms.x, fms.y, Image::INTERPOLATE_NEAREST); if (p_target->has_mipmaps() != mip_maps) { if (mip_maps) { p_target->generate_mipmaps(); } else { p_target->clear_mipmaps(); } } } p_target->lock(); for (int x = 0; x < fms.y; ++x) { for (int z = 0; z < fms.x; ++z) { Color c; float e = element_get(z, p_index_y, x); for (int i = 0; i < channel_count; ++i) { c[channels[i]] = e; } p_target->set_pixel(z, x, c); } } p_target->unlock(); } void MLPPTensor3::y_slice_set_image(const Ref &p_img, const int p_index_y, const int p_image_channel_flag) { ERR_FAIL_COND(!p_img.is_valid()); ERR_FAIL_INDEX(p_index_y, _size.y); int channel_index = -1; for (int i = 0; i < 4; ++i) { if (((p_image_channel_flag & (1 << i)) != 0)) { channel_index = i; break; } } ERR_FAIL_INDEX(channel_index, 4); Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); Size2i fms = Size2i(_size.x, _size.z); ERR_FAIL_COND(img_size != fms); Ref img = p_img; img->lock(); for (int z = 0; z < fms.y; ++z) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, z); element_set(z, p_index_y, x, c[channel_index]); } } img->unlock(); } void MLPPTensor3::add(const Ref &B) { ERR_FAIL_COND(!B.is_valid()); ERR_FAIL_COND(_size != B->size()); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); int ds = data_size(); for (int i = 0; i < ds; ++i) { c_ptr[i] += b_ptr[i]; } } Ref MLPPTensor3::addn(const Ref &B) const { ERR_FAIL_COND_V(!B.is_valid(), Ref()); ERR_FAIL_COND_V(_size != B->size(), Ref()); Ref C; C.instance(); C->resize(_size); const real_t *a_ptr = ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = C->ptrw(); int ds = data_size(); for (int i = 0; i < ds; ++i) { c_ptr[i] = a_ptr[i] + b_ptr[i]; } return C; } void MLPPTensor3::addb(const Ref &A, const Ref &B) { ERR_FAIL_COND(!A.is_valid() || !B.is_valid()); Size3i a_size = A->size(); ERR_FAIL_COND(a_size != B->size()); if (_size != a_size) { resize(a_size); } const real_t *a_ptr = A->ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); int data_size = A->data_size(); for (int i = 0; i < data_size; ++i) { c_ptr[i] = a_ptr[i] + b_ptr[i]; } } void MLPPTensor3::sub(const Ref &B) { ERR_FAIL_COND(!B.is_valid()); ERR_FAIL_COND(_size != B->size()); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); int ds = data_size(); for (int i = 0; i < ds; ++i) { c_ptr[i] -= b_ptr[i]; } } Ref MLPPTensor3::subn(const Ref &B) const { ERR_FAIL_COND_V(!B.is_valid(), Ref()); ERR_FAIL_COND_V(_size != B->size(), Ref()); Ref C; C.instance(); C->resize(_size); const real_t *a_ptr = ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = C->ptrw(); int ds = data_size(); for (int i = 0; i < ds; ++i) { c_ptr[i] = a_ptr[i] - b_ptr[i]; } return C; } void MLPPTensor3::subb(const Ref &A, const Ref &B) { ERR_FAIL_COND(!A.is_valid() || !B.is_valid()); Size3i a_size = A->size(); ERR_FAIL_COND(a_size != B->size()); if (_size != a_size) { resize(a_size); } const real_t *a_ptr = A->ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); int data_size = A->data_size(); for (int i = 0; i < data_size; ++i) { c_ptr[i] = a_ptr[i] - b_ptr[i]; } } void MLPPTensor3::division_element_wise(const Ref &B) { ERR_FAIL_COND(!B.is_valid()); ERR_FAIL_COND(_size != B->size()); int ds = data_size(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); for (int i = 0; i < ds; i++) { c_ptr[i] /= b_ptr[i]; } } Ref MLPPTensor3::division_element_wisen(const Ref &B) const { ERR_FAIL_COND_V(!B.is_valid(), Ref()); ERR_FAIL_COND_V(_size != B->size(), Ref()); int ds = data_size(); Ref C; C.instance(); C->resize(_size); const real_t *a_ptr = ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = C->ptrw(); for (int i = 0; i < ds; i++) { c_ptr[i] = a_ptr[i] / b_ptr[i]; } return C; } void MLPPTensor3::division_element_wiseb(const Ref &A, const Ref &B) { ERR_FAIL_COND(!A.is_valid() || !B.is_valid()); Size3i a_size = A->size(); ERR_FAIL_COND(a_size != B->size()); if (a_size != _size) { resize(a_size); } int ds = data_size(); const real_t *a_ptr = A->ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); for (int i = 0; i < ds; i++) { c_ptr[i] = a_ptr[i] / b_ptr[i]; } } void MLPPTensor3::sqrt() { int ds = data_size(); real_t *out_ptr = ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = Math::sqrt(out_ptr[i]); } } Ref MLPPTensor3::sqrtn() const { Ref out; out.instance(); out->resize(size()); int ds = data_size(); const real_t *a_ptr = ptr(); real_t *out_ptr = out->ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = Math::sqrt(a_ptr[i]); } return out; } void MLPPTensor3::sqrtb(const Ref &A) { ERR_FAIL_COND(!A.is_valid()); Size3i a_size = A->size(); if (a_size != size()) { resize(a_size); } int ds = data_size(); const real_t *a_ptr = A->ptr(); real_t *out_ptr = ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = Math::sqrt(a_ptr[i]); } } void MLPPTensor3::exponentiate(real_t p) { int ds = data_size(); real_t *out_ptr = ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = Math::pow(out_ptr[i], p); } } Ref MLPPTensor3::exponentiaten(real_t p) const { Ref out; out.instance(); out->resize(size()); int ds = data_size(); const real_t *a_ptr = ptr(); real_t *out_ptr = out->ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = Math::pow(a_ptr[i], p); } return out; } void MLPPTensor3::exponentiateb(const Ref &A, real_t p) { ERR_FAIL_COND(!A.is_valid()); Size3i a_size = A->size(); if (a_size != size()) { resize(a_size); } int ds = data_size(); const real_t *a_ptr = A->ptr(); real_t *out_ptr = ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = Math::pow(a_ptr[i], p); } } void MLPPTensor3::scalar_multiply(const real_t scalar) { int ds = data_size(); for (int i = 0; i < ds; ++i) { _data[i] *= scalar; } } Ref MLPPTensor3::scalar_multiplyn(const real_t scalar) const { Ref AN = duplicate_fast(); int ds = AN->data_size(); real_t *an_ptr = AN->ptrw(); for (int i = 0; i < ds; ++i) { an_ptr[i] *= scalar; } return AN; } void MLPPTensor3::scalar_multiplyb(const real_t scalar, const Ref &A) { ERR_FAIL_COND(!A.is_valid()); if (A->size() != _size) { resize(A->size()); } int ds = data_size(); real_t *an_ptr = ptrw(); for (int i = 0; i < ds; ++i) { _data[i] = an_ptr[i] * scalar; } } void MLPPTensor3::scalar_add(const real_t scalar) { int ds = data_size(); for (int i = 0; i < ds; ++i) { _data[i] += scalar; } } Ref MLPPTensor3::scalar_addn(const real_t scalar) const { Ref AN = duplicate_fast(); int ds = AN->data_size(); real_t *an_ptr = AN->ptrw(); for (int i = 0; i < ds; ++i) { an_ptr[i] += scalar; } return AN; } void MLPPTensor3::scalar_addb(const real_t scalar, const Ref &A) { ERR_FAIL_COND(!A.is_valid()); if (A->size() != _size) { resize(A->size()); } int ds = data_size(); real_t *an_ptr = ptrw(); for (int i = 0; i < ds; ++i) { _data[i] = an_ptr[i] + scalar; } } void MLPPTensor3::hadamard_product(const Ref &B) { ERR_FAIL_COND(!B.is_valid()); ERR_FAIL_COND(_size != B->size()); int ds = data_size(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); for (int i = 0; i < ds; i++) { c_ptr[i] = c_ptr[i] * b_ptr[i]; } } Ref MLPPTensor3::hadamard_productn(const Ref &B) const { ERR_FAIL_COND_V(!B.is_valid(), Ref()); ERR_FAIL_COND_V(_size != B->size(), Ref()); int ds = data_size(); Ref C; C.instance(); C->resize(_size); const real_t *a_ptr = ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = C->ptrw(); for (int i = 0; i < ds; i++) { c_ptr[i] = a_ptr[i] * b_ptr[i]; } return C; } void MLPPTensor3::hadamard_productb(const Ref &A, const Ref &B) { ERR_FAIL_COND(!A.is_valid() || !B.is_valid()); Size3i a_size = A->size(); ERR_FAIL_COND(a_size != B->size()); if (a_size != _size) { resize(a_size); } int ds = data_size(); const real_t *a_ptr = A->ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); for (int i = 0; i < ds; i++) { c_ptr[i] = a_ptr[i] * b_ptr[i]; } } void MLPPTensor3::max(const Ref &B) { ERR_FAIL_COND(!B.is_valid()); ERR_FAIL_COND(_size != B->size()); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); int ds = data_size(); for (int i = 0; i < ds; ++i) { c_ptr[i] = MAX(c_ptr[i], b_ptr[i]); } } Ref MLPPTensor3::maxn(const Ref &B) const { ERR_FAIL_COND_V(!B.is_valid(), Ref()); ERR_FAIL_COND_V(_size != B->size(), Ref()); Ref C; C.instance(); C->resize(_size); const real_t *a_ptr = ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = C->ptrw(); int ds = data_size(); for (int i = 0; i < ds; ++i) { c_ptr[i] = MAX(a_ptr[i], b_ptr[i]); } return C; } void MLPPTensor3::maxb(const Ref &A, const Ref &B) { ERR_FAIL_COND(!A.is_valid() || !B.is_valid()); Size3i a_size = A->size(); ERR_FAIL_COND(a_size != B->size()); if (_size != a_size) { resize(a_size); } const real_t *a_ptr = A->ptr(); const real_t *b_ptr = B->ptr(); real_t *c_ptr = ptrw(); int data_size = A->data_size(); for (int i = 0; i < data_size; ++i) { c_ptr[i] = MAX(a_ptr[i], b_ptr[i]); } } void MLPPTensor3::abs() { int ds = data_size(); real_t *out_ptr = ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = ABS(out_ptr[i]); } } Ref MLPPTensor3::absn() const { Ref out; out.instance(); out->resize(size()); int ds = data_size(); const real_t *a_ptr = ptr(); real_t *out_ptr = out->ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = ABS(a_ptr[i]); } return out; } void MLPPTensor3::absb(const Ref &A) { ERR_FAIL_COND(!A.is_valid()); Size3i a_size = A->size(); if (a_size != size()) { resize(a_size); } int ds = data_size(); const real_t *a_ptr = A->ptr(); real_t *out_ptr = ptrw(); for (int i = 0; i < ds; ++i) { out_ptr[i] = ABS(a_ptr[i]); } } Ref MLPPTensor3::flatten() const { int ds = data_size(); Ref res; res.instance(); res->resize(ds); real_t *res_ptr = res->ptrw(); const real_t *a_ptr = ptr(); for (int i = 0; i < ds; ++i) { res_ptr[i] = a_ptr[i]; } return res; } void MLPPTensor3::flatteno(Ref out) const { ERR_FAIL_COND(!out.is_valid()); int ds = data_size(); if (unlikely(out->size() != ds)) { out->resize(ds); } real_t *res_ptr = out->ptrw(); const real_t *a_ptr = ptr(); for (int i = 0; i < ds; ++i) { res_ptr[i] = a_ptr[i]; } } /* real_t MLPPTensor3::norm_2(std::vector>> A) { real_t sum = 0; for (uint32_t i = 0; i < A.size(); i++) { for (uint32_t j = 0; j < A[i].size(); j++) { for (uint32_t k = 0; k < A[i][j].size(); k++) { sum += A[i][j][k] * A[i][j][k]; } } } return Math::sqrt(sum); } */ Ref MLPPTensor3::tensor_vec_mult(const Ref &b) { Ref C; C.instance(); C->resize(Size2i(_size.y, _size.z)); Ref row_tmp; row_tmp.instance(); row_tmp->resize(_size.x); for (int i = 0; i < _size.z; i++) { for (int j = 0; j < _size.y; j++) { row_get_into_mlpp_vector(i, j, row_tmp); C->element_set(i, j, row_tmp->dot(b)); } } return C; } /* // Bad implementation. Change this later. std::vector>> MLPPTensor3::vector_wise_tensor_product(std::vector>> A, std::vector> B) { std::vector>> C; C = resize(C, A); for (uint32_t i = 0; i < A[0].size(); i++) { for (uint32_t j = 0; j < A[0][i].size(); j++) { std::vector currentVector; currentVector.resize(A.size()); for (uint32_t k = 0; k < C.size(); k++) { currentVector[k] = A[k][i][j]; } currentVector = mat_vec_mult(B, currentVector); for (uint32_t k = 0; k < C.size(); k++) { C[k][i][j] = currentVector[k]; } } } return C; } */ void MLPPTensor3::fill(real_t p_val) { if (!_data) { return; } int ds = data_size(); for (int i = 0; i < ds; ++i) { _data[i] = p_val; } } Vector MLPPTensor3::to_flat_vector() const { Vector ret; ret.resize(data_size()); real_t *w = ret.ptrw(); memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } PoolRealArray MLPPTensor3::to_flat_pool_vector() const { PoolRealArray pl; if (data_size()) { pl.resize(data_size()); typename PoolRealArray::Write w = pl.write(); real_t *dest = w.ptr(); for (int i = 0; i < data_size(); ++i) { dest[i] = static_cast(_data[i]); } } return pl; } Vector MLPPTensor3::to_flat_byte_array() const { Vector ret; ret.resize(data_size() * sizeof(real_t)); uint8_t *w = ret.ptrw(); memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } Ref MLPPTensor3::duplicate_fast() const { Ref ret; ret.instance(); ret->set_from_mlpp_tensor3r(*this); return ret; } void MLPPTensor3::set_from_mlpp_tensor3(const Ref &p_from) { ERR_FAIL_COND(!p_from.is_valid()); resize(p_from->size()); int ds = p_from->data_size(); const real_t *ptr = p_from->ptr(); for (int i = 0; i < ds; ++i) { _data[i] = ptr[i]; } } void MLPPTensor3::set_from_mlpp_tensor3r(const MLPPTensor3 &p_from) { resize(p_from.size()); int ds = p_from.data_size(); const real_t *ptr = p_from.ptr(); for (int i = 0; i < ds; ++i) { _data[i] = ptr[i]; } } void MLPPTensor3::set_from_mlpp_matrix(const Ref &p_from) { ERR_FAIL_COND(!p_from.is_valid()); Size2i mat_size = p_from->size(); resize(Size3i(mat_size.x, mat_size.y, 1)); int ds = p_from->data_size(); const real_t *ptr = p_from->ptr(); for (int i = 0; i < ds; ++i) { _data[i] = ptr[i]; } } void MLPPTensor3::set_from_mlpp_matrixr(const MLPPMatrix &p_from) { Size2i mat_size = p_from.size(); resize(Size3i(mat_size.x, mat_size.y, 1)); int ds = p_from.data_size(); const real_t *ptr = p_from.ptr(); for (int i = 0; i < ds; ++i) { _data[i] = ptr[i]; } } void MLPPTensor3::set_from_mlpp_vectors(const Vector> &p_from) { if (p_from.size() == 0) { reset(); return; } if (!p_from[0].is_valid()) { reset(); return; } resize(Size3i(p_from[0]->size(), p_from.size(), 1)); if (data_size() == 0) { reset(); return; } for (int i = 0; i < p_from.size(); ++i) { const Ref &r = p_from[i]; ERR_CONTINUE(!r.is_valid()); ERR_CONTINUE(r->size() != _size.x); int start_index = i * _size.x; const real_t *from_ptr = r->ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } void MLPPTensor3::set_from_mlpp_matricess(const Vector> &p_from) { if (p_from.size() == 0) { reset(); return; } if (!p_from[0].is_valid()) { reset(); return; } resize(Size3i(p_from[0]->size().x, p_from[0]->size().y, p_from.size())); if (data_size() == 0) { reset(); return; } Size2i fms = z_slice_size(); int fmds = z_slice_data_size(); for (int i = 0; i < p_from.size(); ++i) { const Ref &r = p_from[i]; ERR_CONTINUE(!r.is_valid()); ERR_CONTINUE(r->size() != fms); int start_index = calculate_z_slice_index(i); const real_t *from_ptr = r->ptr(); for (int j = 0; j < fmds; j++) { _data[start_index + j] = from_ptr[j]; } } } void MLPPTensor3::set_from_mlpp_vectors_array(const Array &p_from) { if (p_from.size() == 0) { reset(); return; } Ref v0 = p_from[0]; if (!v0.is_valid()) { reset(); return; } resize(Size3i(v0->size(), p_from.size(), 1)); if (data_size() == 0) { reset(); return; } for (int i = 0; i < p_from.size(); ++i) { Ref r = p_from[i]; ERR_CONTINUE(!r.is_valid()); ERR_CONTINUE(r->size() != _size.x); int start_index = i * _size.x; const real_t *from_ptr = r->ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } void MLPPTensor3::set_from_mlpp_matrices_array(const Array &p_from) { if (p_from.size() == 0) { reset(); return; } Ref v0 = p_from[0]; if (!v0.is_valid()) { reset(); return; } resize(Size3i(v0->size().x, v0->size().y, p_from.size())); if (data_size() == 0) { reset(); return; } Size2i fms = z_slice_size(); int fmds = z_slice_data_size(); for (int i = 0; i < p_from.size(); ++i) { Ref r = p_from[i]; ERR_CONTINUE(!r.is_valid()); ERR_CONTINUE(r->size() != fms); int start_index = calculate_z_slice_index(i); const real_t *from_ptr = r->ptr(); for (int j = 0; j < fmds; j++) { _data[start_index + j] = from_ptr[j]; } } } bool MLPPTensor3::is_equal_approx(const Ref &p_with, real_t tolerance) const { ERR_FAIL_COND_V(!p_with.is_valid(), false); if (unlikely(this == p_with.ptr())) { return true; } if (_size != p_with->size()) { return false; } int ds = data_size(); for (int i = 0; i < ds; ++i) { if (!Math::is_equal_approx(_data[i], p_with->_data[i], tolerance)) { return false; } } return true; } String MLPPTensor3::to_string() { String str; str += "[MLPPTensor3: \n"; for (int z = 0; z < _size.z; ++z) { int z_ofs = _size.x * _size.y * z; str += " [ "; for (int y = 0; y < _size.y; ++y) { str += " [ "; for (int x = 0; x < _size.x; ++x) { str += String::num(_data[_size.x * y + x + z_ofs]); str += " "; } str += " ]\n"; } str += "],\n"; } str += "]\n"; return str; } MLPPTensor3::MLPPTensor3() { _data = NULL; } MLPPTensor3::MLPPTensor3(const MLPPMatrix &p_from) { _data = NULL; Size2i mat_size = p_from.size(); resize(Size3i(mat_size.x, mat_size.y, 1)); int ds = p_from.data_size(); const real_t *ptr = p_from.ptr(); for (int i = 0; i < ds; ++i) { _data[i] = ptr[i]; } } MLPPTensor3::MLPPTensor3(const Array &p_from) { _data = NULL; set_from_mlpp_matrices_array(p_from); } MLPPTensor3::~MLPPTensor3() { if (_data) { reset(); } } std::vector MLPPTensor3::to_flat_std_vector() const { std::vector ret; ret.resize(data_size()); real_t *w = &ret[0]; memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } void MLPPTensor3::set_from_std_vectors(const std::vector>> &p_from) { if (p_from.size() == 0) { reset(); return; } resize(Size3i(p_from[0][0].size(), p_from[0].size(), p_from.size())); if (data_size() == 0) { reset(); return; } for (uint32_t z = 0; z < p_from.size(); ++z) { const std::vector> &vxy = p_from[z]; for (uint32_t y = 0; y < vxy.size(); ++y) { ERR_CONTINUE(vxy.size() != static_cast(_size.y)); const std::vector &vx = vxy[y]; ERR_CONTINUE(vx.size() != static_cast(_size.x)); for (uint32_t x = 0; x < vx.size(); ++x) { element_set(z, y, x, vx[x]); } } } } std::vector>> MLPPTensor3::to_std_vector() { std::vector>> ret; ret.resize(_size.z); for (int k = 0; k < _size.z; ++k) { ret[k].resize(_size.y); for (int i = 0; i < _size.y; ++i) { std::vector row; for (int j = 0; j < _size.x; ++j) { row.push_back(_data[calculate_index(k, i, j)]); } ret[k][i] = row; } } return ret; } MLPPTensor3::MLPPTensor3(const std::vector>> &p_from) { _data = NULL; set_from_std_vectors(p_from); } void MLPPTensor3::_bind_methods() { ClassDB::bind_method(D_METHOD("get_data"), &MLPPTensor3::get_data); ClassDB::bind_method(D_METHOD("set_data", "data"), &MLPPTensor3::set_data); ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "data"), "set_data", "get_data"); ClassDB::bind_method(D_METHOD("z_slice_add_pool_vector", "row"), &MLPPTensor3::z_slice_add_pool_vector); ClassDB::bind_method(D_METHOD("z_slice_add_mlpp_vector", "row"), &MLPPTensor3::z_slice_add_mlpp_vector); ClassDB::bind_method(D_METHOD("z_slice_add_mlpp_matrix", "matrix"), &MLPPTensor3::z_slice_add_mlpp_matrix); ClassDB::bind_method(D_METHOD("z_slice_remove", "index"), &MLPPTensor3::z_slice_remove); ClassDB::bind_method(D_METHOD("z_slice_remove_unordered", "index"), &MLPPTensor3::z_slice_remove_unordered); ClassDB::bind_method(D_METHOD("z_slice_swap", "index_1", "index_2"), &MLPPTensor3::z_slice_swap); ClassDB::bind_method(D_METHOD("clear"), &MLPPTensor3::clear); ClassDB::bind_method(D_METHOD("reset"), &MLPPTensor3::reset); ClassDB::bind_method(D_METHOD("empty"), &MLPPTensor3::empty); ClassDB::bind_method(D_METHOD("z_slice_data_size"), &MLPPTensor3::z_slice_data_size); ClassDB::bind_method(D_METHOD("z_slice_size"), &MLPPTensor3::z_slice_size); ClassDB::bind_method(D_METHOD("data_size"), &MLPPTensor3::data_size); ClassDB::bind_method(D_METHOD("size"), &MLPPTensor3::size); ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPTensor3::resize); ClassDB::bind_method(D_METHOD("shape_set", "size"), &MLPPTensor3::shape_set); ClassDB::bind_method(D_METHOD("calculate_index", "index_y", "index_x", "index_z"), &MLPPTensor3::calculate_index); ClassDB::bind_method(D_METHOD("calculate_z_slice_index", "index_z"), &MLPPTensor3::calculate_z_slice_index); ClassDB::bind_method(D_METHOD("element_get_index", "index"), &MLPPTensor3::element_get_index); ClassDB::bind_method(D_METHOD("element_set_index", "index", "val"), &MLPPTensor3::element_set_index); ClassDB::bind_method(D_METHOD("element_get", "index_y", "index_x", "index_z"), &MLPPTensor3::element_get); ClassDB::bind_method(D_METHOD("element_set", "index_y", "index_x", "index_z", "val"), &MLPPTensor3::element_set); ClassDB::bind_method(D_METHOD("row_get_pool_vector", "index_y", "index_z"), &MLPPTensor3::row_get_pool_vector); ClassDB::bind_method(D_METHOD("row_get_mlpp_vector", "index_y", "index_z"), &MLPPTensor3::row_get_mlpp_vector); ClassDB::bind_method(D_METHOD("row_get_into_mlpp_vector", "index_y", "index_z", "target"), &MLPPTensor3::row_get_into_mlpp_vector); ClassDB::bind_method(D_METHOD("row_set_pool_vector", "index_y", "index_z", "row"), &MLPPTensor3::row_set_pool_vector); ClassDB::bind_method(D_METHOD("row_set_mlpp_vector", "index_y", "index_z", "row"), &MLPPTensor3::row_set_mlpp_vector); ClassDB::bind_method(D_METHOD("z_slice_get_pool_vector", "index_z"), &MLPPTensor3::z_slice_get_pool_vector); ClassDB::bind_method(D_METHOD("z_slice_get_mlpp_vector", "index_z"), &MLPPTensor3::z_slice_get_mlpp_vector); ClassDB::bind_method(D_METHOD("z_slice_get_into_mlpp_vector", "index_z", "target"), &MLPPTensor3::z_slice_get_into_mlpp_vector); ClassDB::bind_method(D_METHOD("z_slice_get_mlpp_matrix", "index_z"), &MLPPTensor3::z_slice_get_mlpp_matrix); ClassDB::bind_method(D_METHOD("z_slice_get_into_mlpp_matrix", "index_z", "target"), &MLPPTensor3::z_slice_get_into_mlpp_matrix); ClassDB::bind_method(D_METHOD("z_slice_set_pool_vector", "index_z", "row"), &MLPPTensor3::z_slice_set_pool_vector); ClassDB::bind_method(D_METHOD("z_slice_set_mlpp_vector", "index_z", "row"), &MLPPTensor3::z_slice_set_mlpp_vector); ClassDB::bind_method(D_METHOD("z_slice_set_mlpp_matrix", "index_z", "mat"), &MLPPTensor3::z_slice_set_mlpp_matrix); ClassDB::bind_method(D_METHOD("x_slice_get_into", "index_x", "target"), &MLPPTensor3::x_slice_get_into); ClassDB::bind_method(D_METHOD("x_slice_get", "index_x"), &MLPPTensor3::x_slice_get); ClassDB::bind_method(D_METHOD("x_slice_set", "index_x", "mat"), &MLPPTensor3::x_slice_set); ClassDB::bind_method(D_METHOD("y_slice_get_into", "index_y", "target"), &MLPPTensor3::y_slice_get_into); ClassDB::bind_method(D_METHOD("y_slice_get", "index_y"), &MLPPTensor3::y_slice_get); ClassDB::bind_method(D_METHOD("y_slice_set", "index_y", "mat"), &MLPPTensor3::y_slice_set); ClassDB::bind_method(D_METHOD("z_slices_add_image", "img", "channels"), &MLPPTensor3::z_slices_add_image, IMAGE_CHANNEL_FLAG_RGBA); ClassDB::bind_method(D_METHOD("z_slice_get_image", "index_z"), &MLPPTensor3::z_slice_get_image); ClassDB::bind_method(D_METHOD("z_slices_get_image", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::z_slices_get_image, -1, -1, -1, -1); ClassDB::bind_method(D_METHOD("z_slice_get_into_image", "target", "index_z", "target_channels"), &MLPPTensor3::z_slice_get_into_image, IMAGE_CHANNEL_FLAG_RGB); ClassDB::bind_method(D_METHOD("z_slices_get_into_image", "target", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::z_slices_get_into_image, -1, -1, -1, -1); ClassDB::bind_method(D_METHOD("z_slice_set_image", "img", "index_z", "image_channel_flag"), &MLPPTensor3::z_slice_set_image, IMAGE_CHANNEL_FLAG_R); ClassDB::bind_method(D_METHOD("z_slices_set_image", "img", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::z_slices_set_image); ClassDB::bind_method(D_METHOD("set_from_image", "img", "channels"), &MLPPTensor3::set_from_image, IMAGE_CHANNEL_FLAG_RGBA); ClassDB::bind_method(D_METHOD("x_slice_get_image", "index_x"), &MLPPTensor3::x_slice_get_image); ClassDB::bind_method(D_METHOD("x_slice_get_into_image", "target", "index_x", "target_channels"), &MLPPTensor3::x_slice_get_into_image, IMAGE_CHANNEL_FLAG_RGB); ClassDB::bind_method(D_METHOD("x_slice_set_image", "img", "index_x", "image_channel_flag"), &MLPPTensor3::x_slice_set_image, IMAGE_CHANNEL_FLAG_R); ClassDB::bind_method(D_METHOD("y_slice_get_image", "index_x"), &MLPPTensor3::y_slice_get_image); ClassDB::bind_method(D_METHOD("y_slice_get_into_image", "target", "index_x", "target_channels"), &MLPPTensor3::y_slice_get_into_image, IMAGE_CHANNEL_FLAG_RGB); ClassDB::bind_method(D_METHOD("y_slice_set_image", "img", "index_x", "image_channel_flag"), &MLPPTensor3::y_slice_set_image, IMAGE_CHANNEL_FLAG_R); ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPTensor3::fill); ClassDB::bind_method(D_METHOD("to_flat_pool_vector"), &MLPPTensor3::to_flat_pool_vector); ClassDB::bind_method(D_METHOD("to_flat_byte_array"), &MLPPTensor3::to_flat_byte_array); ClassDB::bind_method(D_METHOD("duplicate_fast"), &MLPPTensor3::duplicate_fast); ClassDB::bind_method(D_METHOD("set_from_mlpp_tensor3", "from"), &MLPPTensor3::set_from_mlpp_tensor3); ClassDB::bind_method(D_METHOD("set_from_mlpp_matrix", "from"), &MLPPTensor3::set_from_mlpp_matrix); ClassDB::bind_method(D_METHOD("set_from_mlpp_vectors_array", "from"), &MLPPTensor3::set_from_mlpp_vectors_array); ClassDB::bind_method(D_METHOD("set_from_mlpp_matrices_array", "from"), &MLPPTensor3::set_from_mlpp_matrices_array); ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPTensor3::is_equal_approx, CMP_EPSILON); ClassDB::bind_method(D_METHOD("add", "B"), &MLPPTensor3::add); ClassDB::bind_method(D_METHOD("addn", "B"), &MLPPTensor3::addn); ClassDB::bind_method(D_METHOD("addb", "A", "B"), &MLPPTensor3::addb); ClassDB::bind_method(D_METHOD("sub", "B"), &MLPPTensor3::sub); ClassDB::bind_method(D_METHOD("subn", "B"), &MLPPTensor3::subn); ClassDB::bind_method(D_METHOD("subb", "A", "B"), &MLPPTensor3::subb); ClassDB::bind_method(D_METHOD("hadamard_product", "B"), &MLPPTensor3::hadamard_product); ClassDB::bind_method(D_METHOD("hadamard_productn", "B"), &MLPPTensor3::hadamard_productn); ClassDB::bind_method(D_METHOD("hadamard_productb", "A", "B"), &MLPPTensor3::hadamard_productb); ClassDB::bind_method(D_METHOD("division_element_wise", "B"), &MLPPTensor3::division_element_wise); ClassDB::bind_method(D_METHOD("division_element_wisen", "B"), &MLPPTensor3::division_element_wisen); ClassDB::bind_method(D_METHOD("division_element_wiseb", "A", "B"), &MLPPTensor3::division_element_wiseb); ClassDB::bind_method(D_METHOD("scalar_multiply", "scalar"), &MLPPTensor3::scalar_multiply); ClassDB::bind_method(D_METHOD("scalar_multiplyn", "scalar"), &MLPPTensor3::scalar_multiplyn); ClassDB::bind_method(D_METHOD("scalar_multiplyb", "scalar", "A"), &MLPPTensor3::scalar_multiplyb); ClassDB::bind_method(D_METHOD("scalar_add", "scalar"), &MLPPTensor3::scalar_add); ClassDB::bind_method(D_METHOD("scalar_addn", "scalar"), &MLPPTensor3::scalar_addn); ClassDB::bind_method(D_METHOD("scalar_addb", "scalar", "A"), &MLPPTensor3::scalar_addb); ClassDB::bind_method(D_METHOD("exponentiate", "p"), &MLPPTensor3::exponentiate); ClassDB::bind_method(D_METHOD("exponentiaten", "p"), &MLPPTensor3::exponentiaten); ClassDB::bind_method(D_METHOD("exponentiateb", "A", "p"), &MLPPTensor3::exponentiateb); ClassDB::bind_method(D_METHOD("sqrt"), &MLPPTensor3::sqrt); ClassDB::bind_method(D_METHOD("sqrtn"), &MLPPTensor3::sqrtn); ClassDB::bind_method(D_METHOD("sqrtb", "A"), &MLPPTensor3::sqrtb); ClassDB::bind_method(D_METHOD("abs"), &MLPPTensor3::abs); ClassDB::bind_method(D_METHOD("absn"), &MLPPTensor3::absn); ClassDB::bind_method(D_METHOD("absb", "A"), &MLPPTensor3::absb); ClassDB::bind_method(D_METHOD("max", "B"), &MLPPTensor3::max); ClassDB::bind_method(D_METHOD("maxn", "B"), &MLPPTensor3::maxn); ClassDB::bind_method(D_METHOD("maxb", "A", "B"), &MLPPTensor3::maxb); ClassDB::bind_method(D_METHOD("flatten"), &MLPPTensor3::flatten); ClassDB::bind_method(D_METHOD("flatteno", "out"), &MLPPTensor3::flatteno); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_R); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_G); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_B); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_A); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_NONE); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RG); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RGB); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_GB); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_GBA); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_BA); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RGBA); }