// // SoftmaxNet.cpp // // Created by Marc Melikyan on 10/2/20. // #include "softmax_net.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../data/data.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include "core/log/logger.h" #include /* Ref MLPPSoftmaxNet::get_input_set() { return _input_set; } void MLPPSoftmaxNet::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } Ref MLPPSoftmaxNet::get_output_set() { return _output_set; } void MLPPSoftmaxNet::set_output_set(const Ref &val) { _output_set = val; _initialized = false; } MLPPReg::RegularizationType MLPPSoftmaxNet::get_reg() { return _reg; } void MLPPSoftmaxNet::set_reg(const MLPPReg::RegularizationType val) { _reg = val; _initialized = false; } real_t MLPPSoftmaxNet::get_lambda() { return _lambda; } void MLPPSoftmaxNet::set_lambda(const real_t val) { _lambda = val; _initialized = false; } real_t MLPPSoftmaxNet::get_alpha() { return _alpha; } void MLPPSoftmaxNet::set_alpha(const real_t val) { _alpha = val; _initialized = false; } */ Ref MLPPSoftmaxNet::model_test(const Ref &x) { return evaluatev(x); } Ref MLPPSoftmaxNet::model_set_test(const Ref &X) { return evaluatem(X); } void MLPPSoftmaxNet::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); // Calculating the errors Ref error = _y_hat->subn(_output_set); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = _a2->transposen()->multn(error); // weights and bias updation for layer 2 _weights2->sub(D2_1->scalar_multiplyn(learning_rate)); _weights2 = regularization.reg_weightsm(_weights2, _lambda, _alpha, _reg); _bias2->subtract_matrix_rows(error->scalar_multiplyn(learning_rate)); //Calculating the weight/bias for layer 1 Ref D1_1 = error->multn(_weights2->transposen()); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivm(_z2)); Ref D1_3 = _input_set->transposen()->multn(D1_2); // weight an bias updation for layer 1 _weights1->sub(D1_3->scalar_multiplyn(learning_rate)); _weights1 = regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg); _bias1->subtract_matrix_rows(D1_2->scalar_multiplyn(learning_rate)); forward_pass(); // UI PORTION if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPSoftmaxNet::sgd(real_t learning_rate, int max_epoch, bool ui) { MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref output_set_row_tmp; output_set_row_tmp.instance(); output_set_row_tmp->resize(_output_set->size().x); Ref y_hat_mat_tmp; y_hat_mat_tmp.instance(); y_hat_mat_tmp->resize(Size2i(_bias1->size(), 1)); Ref output_row_mat_tmp; output_row_mat_tmp.instance(); output_row_mat_tmp->resize(Size2i(_output_set->size().x, 1)); while (true) { int output_index = distribution(generator); _input_set->get_row_into_mlpp_vector(output_index, input_set_row_tmp); _output_set->get_row_into_mlpp_vector(output_index, output_set_row_tmp); output_row_mat_tmp->set_row_mlpp_vector(0, output_set_row_tmp); Ref y_hat = evaluatev(input_set_row_tmp); y_hat_mat_tmp->set_row_mlpp_vector(0, y_hat); PropagateVResult prop_res = propagatev(input_set_row_tmp); cost_prev = cost(y_hat_mat_tmp, output_row_mat_tmp); Ref error = y_hat->subn(output_set_row_tmp); // Weight updation for layer 2 Ref D2_1 = error->outer_product(prop_res.a2); _weights2->sub(D2_1->transposen()->scalar_multiplyn(learning_rate)); _weights2 = regularization.reg_weightsm(_weights2, _lambda, _alpha, _reg); // Bias updation for layer 2 _bias2->sub(error->scalar_multiplyn(learning_rate)); // Weight updation for layer 1 Ref D1_1 = _weights2->mult_vec(error); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivv(prop_res.z2)); Ref D1_3 = input_set_row_tmp->outer_product(D1_2); _weights1->sub(D1_3->scalar_multiplyn(learning_rate)); _weights1 = regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg); // Bias updation for layer 1 _bias1->sub(D1_2->scalar_multiplyn(learning_rate)); y_hat = evaluatev(input_set_row_tmp); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_mat_tmp, output_row_mat_tmp)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPSoftmaxNet::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; MLPPUtilities::CreateMiniBatchMMBatch batches = MLPPUtilities::create_mini_batchesmm(_input_set, _output_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_input_mini_batch = batches.input_sets[i]; Ref current_output_mini_batch = batches.output_sets[i]; Ref y_hat = evaluatem(current_input_mini_batch); PropagateMResult prop_res = propagatem(current_input_mini_batch); cost_prev = cost(y_hat, current_output_mini_batch); // Calculating the errors Ref error = y_hat->subn(current_output_mini_batch); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = prop_res.a2->transposen()->multn(error); // weights and bias updation for layser 2 _weights2->sub(D2_1->scalar_multiplyn(learning_rate)); _weights2 = regularization.reg_weightsm(_weights2, _lambda, _alpha, _reg); // Bias Updation for layer 2 _bias2->sub(error->scalar_multiplyn(learning_rate)); //Calculating the weight/bias for layer 1 Ref D1_1 = error->multn(_weights2->transposen()); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivm(prop_res.z2)); Ref D1_3 = current_input_mini_batch->transposen()->multn(D1_2); // weight an bias updation for layer 1 _weights1->sub(D1_3->scalar_multiplyn(learning_rate)); _weights1 = regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg); _bias1->subtract_matrix_rows(D1_2->scalar_multiplyn(learning_rate)); y_hat = evaluatem(current_input_mini_batch); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output_mini_batch)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPSoftmaxNet::score() { MLPPUtilities util; return util.performance_mat(_y_hat, _output_set); } void MLPPSoftmaxNet::save(const String &file_name) { MLPPUtilities util; //util.saveParameters(fileName, _weights1, _bias1, false, 1); //util.saveParameters(fileName, _weights2, _bias2, true, 2); } Ref MLPPSoftmaxNet::get_embeddings() { return _weights1; } bool MLPPSoftmaxNet::is_initialized() { return _initialized; } void MLPPSoftmaxNet::initialize() { if (_initialized) { return; } //ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); _initialized = true; } MLPPSoftmaxNet::MLPPSoftmaxNet(const Ref &p_input_set, const Ref &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { _input_set = p_input_set; _output_set = p_output_set; _n = p_input_set->size().y; _k = p_input_set->size().x; _n_hidden = p_n_hidden; _n_class = p_output_set->size().x; _reg = p_reg; _lambda = p_lambda; _alpha = p_alpha; _y_hat.instance(); _y_hat->resize(Size2i(0, _n)); MLPPUtilities utils; _weights1.instance(); _weights1->resize(Size2i(_n_hidden, _k)); utils.weight_initializationm(_weights1); _weights2.instance(); _weights2->resize(Size2i(_n_class, _n_hidden)); utils.weight_initializationm(_weights2); _bias1.instance(); _bias1->resize(_n_hidden); utils.bias_initializationv(_bias1); _bias2.instance(); _bias2->resize(_n_class); utils.bias_initializationv(_bias2); _initialized = true; } MLPPSoftmaxNet::MLPPSoftmaxNet() { _initialized = false; } MLPPSoftmaxNet::~MLPPSoftmaxNet() { } real_t MLPPSoftmaxNet::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; MLPPData data; MLPPCost mlpp_cost; return mlpp_cost.cross_entropym(y_hat, y) + regularization.reg_termm(_weights1, _lambda, _alpha, _reg) + regularization.reg_termm(_weights2, _lambda, _alpha, _reg); } Ref MLPPSoftmaxNet::evaluatev(const Ref &x) { MLPPActivation avn; Ref z2 = _weights1->transposen()->mult_vec(x)->addn(_bias1); Ref a2 = avn.sigmoid_normv(z2); return avn.adj_softmax_normv(_weights2->transposen()->mult_vec(a2)->addn(_bias2)); } MLPPSoftmaxNet::PropagateVResult MLPPSoftmaxNet::propagatev(const Ref &x) { MLPPActivation avn; PropagateVResult res; res.z2 = _weights1->transposen()->mult_vec(x)->addn(_bias1); res.a2 = avn.sigmoid_normv(res.z2); return res; } Ref MLPPSoftmaxNet::evaluatem(const Ref &X) { MLPPActivation avn; Ref z2 = X->multn(_weights1)->add_vecn(_bias1); Ref a2 = avn.sigmoid_normm(z2); return avn.adj_softmax_normm(a2->multn(_weights2)->add_vecn(_bias2)); } MLPPSoftmaxNet::PropagateMResult MLPPSoftmaxNet::propagatem(const Ref &X) { MLPPActivation avn; MLPPSoftmaxNet::PropagateMResult res; res.z2 = X->multn(_weights1)->add_vecn(_bias1); res.a2 = avn.sigmoid_normm(res.z2); return res; } void MLPPSoftmaxNet::forward_pass() { MLPPActivation avn; _z2 = _input_set->multn(_weights1)->add_vecn(_bias1); _a2 = avn.sigmoid_normm(_z2); _y_hat = avn.adj_softmax_normm(_a2->multn(_weights2)->add_vecn(_bias2)); } void MLPPSoftmaxNet::_bind_methods() { /* ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPSoftmaxNet::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPSoftmaxNet::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPSoftmaxNet::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPSoftmaxNet::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPSoftmaxNet::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPSoftmaxNet::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPSoftmaxNet::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPSoftmaxNet::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPSoftmaxNet::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPSoftmaxNet::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPSoftmaxNet::model_test); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPSoftmaxNet::model_set_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxNet::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxNet::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPSoftmaxNet::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPSoftmaxNet::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPSoftmaxNet::save); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPSoftmaxNet::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPSoftmaxNet::initialize); */ }