// // OutputLayer.cpp // // Created by Marc Melikyan on 11/4/20. // #include "output_layer.h" #include "../lin_alg/lin_alg.h" #include "../utilities/utilities.h" #include #include int MLPPOutputLayer::get_n_hidden() { return n_hidden; } void MLPPOutputLayer::set_n_hidden(const int val) { n_hidden = val; _initialized = false; } MLPPActivation::ActivationFunction MLPPOutputLayer::get_activation() { return activation; } void MLPPOutputLayer::set_activation(const MLPPActivation::ActivationFunction val) { activation = val; _initialized = false; } MLPPCost::CostTypes MLPPOutputLayer::get_cost() { return cost; } void MLPPOutputLayer::set_cost(const MLPPCost::CostTypes val) { cost = val; _initialized = false; } Ref MLPPOutputLayer::get_input() { return input; } void MLPPOutputLayer::set_input(const Ref &val) { input = val; _initialized = false; } Ref MLPPOutputLayer::get_weights() { return weights; } void MLPPOutputLayer::set_weights(const Ref &val) { weights = val; _initialized = false; } real_t MLPPOutputLayer::MLPPOutputLayer::get_bias() { return bias; } void MLPPOutputLayer::set_bias(const real_t val) { bias = val; _initialized = false; } Ref MLPPOutputLayer::get_z() { return z; } void MLPPOutputLayer::set_z(const Ref &val) { z = val; _initialized = false; } Ref MLPPOutputLayer::get_a() { return a; } void MLPPOutputLayer::set_a(const Ref &val) { a = val; _initialized = false; } Ref MLPPOutputLayer::get_z_test() { return z_test; } void MLPPOutputLayer::set_z_test(const Ref &val) { z_test = val; _initialized = false; } Ref MLPPOutputLayer::get_a_test() { return a_test; } void MLPPOutputLayer::set_a_test(const Ref &val) { a_test = val; _initialized = false; } Ref MLPPOutputLayer::get_delta() { return delta; } void MLPPOutputLayer::set_delta(const Ref &val) { delta = val; _initialized = false; } MLPPReg::RegularizationType MLPPOutputLayer::get_reg() { return reg; } void MLPPOutputLayer::set_reg(const MLPPReg::RegularizationType val) { reg = val; } real_t MLPPOutputLayer::get_lambda() { return lambda; } void MLPPOutputLayer::set_lambda(const real_t val) { lambda = val; _initialized = false; } real_t MLPPOutputLayer::get_alpha() { return alpha; } void MLPPOutputLayer::set_alpha(const real_t val) { alpha = val; _initialized = false; } MLPPUtilities::WeightDistributionType MLPPOutputLayer::get_weight_init() { return weight_init; } void MLPPOutputLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) { weight_init = val; _initialized = false; } bool MLPPOutputLayer::is_initialized() { return _initialized; } void MLPPOutputLayer::initialize() { if (_initialized) { return; } weights->resize(n_hidden); MLPPUtilities utils; utils.weight_initializationv(weights, weight_init); bias = utils.bias_initializationr(); _initialized = true; } void MLPPOutputLayer::forward_pass() { if (!_initialized) { initialize(); } MLPPLinAlg alg; MLPPActivation avn; z = alg.scalar_addnv(bias, alg.mat_vec_multv(input, weights)); a = avn.run_activation_norm_vector(activation, z); } void MLPPOutputLayer::test(const Ref &x) { if (!_initialized) { initialize(); } MLPPLinAlg alg; MLPPActivation avn; z_test = alg.dotv(weights, x) + bias; a_test = avn.run_activation_norm_vector(activation, z_test); } MLPPOutputLayer::MLPPOutputLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { n_hidden = p_n_hidden; activation = p_activation; input = p_input; // Regularization Params reg = p_reg; lambda = p_lambda; /* Regularization Parameter */ alpha = p_alpha; /* This is the controlling param for Elastic Net*/ weight_init = p_weight_init; z.instance(); a.instance(); z_test.instance(); a_test.instance(); delta.instance(); weights.instance(); bias = 0; weights->resize(n_hidden); MLPPUtilities utils; utils.weight_initializationv(weights, weight_init); bias = utils.bias_initializationr(); _initialized = true; } MLPPOutputLayer::MLPPOutputLayer() { n_hidden = 0; activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR; // Regularization Params //reg = 0; lambda = 0; /* Regularization Parameter */ alpha = 0; /* This is the controlling param for Elastic Net*/ weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT; z.instance(); a.instance(); z_test.instance(); a_test.instance(); delta.instance(); weights.instance(); bias = 0; _initialized = false; } MLPPOutputLayer::~MLPPOutputLayer() { } void MLPPOutputLayer::_bind_methods() { ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPOutputLayer::get_n_hidden); ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPOutputLayer::set_n_hidden); ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden"); ClassDB::bind_method(D_METHOD("get_activation"), &MLPPOutputLayer::get_activation); ClassDB::bind_method(D_METHOD("set_activation", "val"), &MLPPOutputLayer::set_activation); ADD_PROPERTY(PropertyInfo(Variant::INT, "activation"), "set_activation", "get_activation"); ClassDB::bind_method(D_METHOD("get_cost"), &MLPPOutputLayer::get_cost); ClassDB::bind_method(D_METHOD("set_cost", "val"), &MLPPOutputLayer::set_cost); ADD_PROPERTY(PropertyInfo(Variant::INT, "cost"), "set_cost", "get_cost"); ClassDB::bind_method(D_METHOD("get_input"), &MLPPOutputLayer::get_input); ClassDB::bind_method(D_METHOD("set_input", "val"), &MLPPOutputLayer::set_input); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input", "get_input"); ClassDB::bind_method(D_METHOD("get_weights"), &MLPPOutputLayer::get_weights); ClassDB::bind_method(D_METHOD("set_weights", "val"), &MLPPOutputLayer::set_weights); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_weights", "get_weights"); ClassDB::bind_method(D_METHOD("get_bias"), &MLPPOutputLayer::get_bias); ClassDB::bind_method(D_METHOD("set_bias", "val"), &MLPPOutputLayer::set_bias); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias"), "set_bias", "get_bias"); ClassDB::bind_method(D_METHOD("get_z"), &MLPPOutputLayer::get_z); ClassDB::bind_method(D_METHOD("set_z", "val"), &MLPPOutputLayer::set_z); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_z", "get_z"); ClassDB::bind_method(D_METHOD("get_a"), &MLPPOutputLayer::get_a); ClassDB::bind_method(D_METHOD("set_a", "val"), &MLPPOutputLayer::set_a); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_a", "get_a"); ClassDB::bind_method(D_METHOD("get_z_test"), &MLPPOutputLayer::get_z_test); ClassDB::bind_method(D_METHOD("set_z_test", "val"), &MLPPOutputLayer::set_z_test); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_z_test", "get_z_test"); ClassDB::bind_method(D_METHOD("get_a_test"), &MLPPOutputLayer::get_a_test); ClassDB::bind_method(D_METHOD("set_a_test", "val"), &MLPPOutputLayer::set_a_test); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_a_test", "get_a_test"); ClassDB::bind_method(D_METHOD("get_delta"), &MLPPOutputLayer::get_delta); ClassDB::bind_method(D_METHOD("set_delta", "val"), &MLPPOutputLayer::set_delta); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "delta", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_delta", "get_delta"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPOutputLayer::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPOutputLayer::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPOutputLayer::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPOutputLayer::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPOutputLayer::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPOutputLayer::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("get_weight_init"), &MLPPOutputLayer::get_weight_init); ClassDB::bind_method(D_METHOD("set_weight_init", "val"), &MLPPOutputLayer::set_weight_init); ADD_PROPERTY(PropertyInfo(Variant::INT, "set_weight_init"), "set_weight_init", "get_weight_init"); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPOutputLayer::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPOutputLayer::initialize); ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPOutputLayer::forward_pass); ClassDB::bind_method(D_METHOD("test", "x"), &MLPPOutputLayer::test); } MLPPOldOutputLayer::MLPPOldOutputLayer(int p_n_hidden, std::string p_activation, std::string p_cost, std::vector> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) { n_hidden = p_n_hidden; activation = p_activation; cost = p_cost; input = p_input; weightInit = p_weightInit; reg = p_reg; lambda = p_lambda; alpha = p_alpha; weights = MLPPUtilities::weightInitialization(n_hidden, weightInit); bias = MLPPUtilities::biasInitialization(); activation_map["Linear"] = &MLPPActivation::linear; activationTest_map["Linear"] = &MLPPActivation::linear; activation_map["Sigmoid"] = &MLPPActivation::sigmoid; activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid; activation_map["Swish"] = &MLPPActivation::swish; activationTest_map["Swish"] = &MLPPActivation::swish; activation_map["Mish"] = &MLPPActivation::mish; activationTest_map["Mish"] = &MLPPActivation::mish; activation_map["SinC"] = &MLPPActivation::sinc; activationTest_map["SinC"] = &MLPPActivation::sinc; activation_map["Softplus"] = &MLPPActivation::softplus; activationTest_map["Softplus"] = &MLPPActivation::softplus; activation_map["Softsign"] = &MLPPActivation::softsign; activationTest_map["Softsign"] = &MLPPActivation::softsign; activation_map["CLogLog"] = &MLPPActivation::cloglog; activationTest_map["CLogLog"] = &MLPPActivation::cloglog; activation_map["Logit"] = &MLPPActivation::logit; activationTest_map["Logit"] = &MLPPActivation::logit; activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF; activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF; activation_map["RELU"] = &MLPPActivation::RELU; activationTest_map["RELU"] = &MLPPActivation::RELU; activation_map["GELU"] = &MLPPActivation::GELU; activationTest_map["GELU"] = &MLPPActivation::GELU; activation_map["Sign"] = &MLPPActivation::sign; activationTest_map["Sign"] = &MLPPActivation::sign; activation_map["UnitStep"] = &MLPPActivation::unitStep; activationTest_map["UnitStep"] = &MLPPActivation::unitStep; activation_map["Sinh"] = &MLPPActivation::sinh; activationTest_map["Sinh"] = &MLPPActivation::sinh; activation_map["Cosh"] = &MLPPActivation::cosh; activationTest_map["Cosh"] = &MLPPActivation::cosh; activation_map["Tanh"] = &MLPPActivation::tanh; activationTest_map["Tanh"] = &MLPPActivation::tanh; activation_map["Csch"] = &MLPPActivation::csch; activationTest_map["Csch"] = &MLPPActivation::csch; activation_map["Sech"] = &MLPPActivation::sech; activationTest_map["Sech"] = &MLPPActivation::sech; activation_map["Coth"] = &MLPPActivation::coth; activationTest_map["Coth"] = &MLPPActivation::coth; activation_map["Arsinh"] = &MLPPActivation::arsinh; activationTest_map["Arsinh"] = &MLPPActivation::arsinh; activation_map["Arcosh"] = &MLPPActivation::arcosh; activationTest_map["Arcosh"] = &MLPPActivation::arcosh; activation_map["Artanh"] = &MLPPActivation::artanh; activationTest_map["Artanh"] = &MLPPActivation::artanh; activation_map["Arcsch"] = &MLPPActivation::arcsch; activationTest_map["Arcsch"] = &MLPPActivation::arcsch; activation_map["Arsech"] = &MLPPActivation::arsech; activationTest_map["Arsech"] = &MLPPActivation::arsech; activation_map["Arcoth"] = &MLPPActivation::arcoth; activationTest_map["Arcoth"] = &MLPPActivation::arcoth; costDeriv_map["MSE"] = &MLPPCost::MSEDeriv; cost_map["MSE"] = &MLPPCost::MSE; costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv; cost_map["RMSE"] = &MLPPCost::RMSE; costDeriv_map["MAE"] = &MLPPCost::MAEDeriv; cost_map["MAE"] = &MLPPCost::MAE; costDeriv_map["MBE"] = &MLPPCost::MBEDeriv; cost_map["MBE"] = &MLPPCost::MBE; costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv; cost_map["LogLoss"] = &MLPPCost::LogLoss; costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv; cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy; costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv; cost_map["HingeLoss"] = &MLPPCost::HingeLoss; costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv; cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss; } void MLPPOldOutputLayer::forwardPass() { MLPPLinAlg alg; MLPPActivation avn; z = alg.scalarAdd(bias, alg.mat_vec_mult(input, weights)); a = (avn.*activation_map[activation])(z, false); } void MLPPOldOutputLayer::Test(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; z_test = alg.dot(weights, x) + bias; a_test = (avn.*activationTest_map[activation])(z_test, false); }