#include "mlpp_tensor3.h" String MLPPTensor3::to_string() { String str; str += "[MLPPTensor3: \n"; for (int z = 0; z < _size.z; ++z) { int z_ofs = _size.x * _size.y * z; str += " [ "; for (int y = 0; y < _size.y; ++y) { str += " [ "; for (int x = 0; x < _size.x; ++x) { str += String::num(_data[_size.x * y + x + z_ofs]); str += " "; } str += " ]\n"; } str += "],\n"; } str += "]\n"; return str; } std::vector MLPPTensor3::to_flat_std_vector() const { std::vector ret; ret.resize(data_size()); real_t *w = &ret[0]; memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } void MLPPTensor3::set_from_std_vectors(const std::vector>> &p_from) { if (p_from.size() == 0) { reset(); return; } resize(Size3i(p_from[1].size(), p_from.size(), p_from[0].size())); if (data_size() == 0) { reset(); return; } for (uint32_t k = 0; k < p_from.size(); ++k) { const std::vector> &fm = p_from[k]; for (uint32_t i = 0; i < p_from.size(); ++i) { const std::vector &r = fm[i]; ERR_CONTINUE(r.size() != static_cast(_size.x)); int start_index = i * _size.x; const real_t *from_ptr = &r[0]; for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } } std::vector>> MLPPTensor3::to_std_vector() { std::vector>> ret; ret.resize(_size.z); for (int k = 0; k < _size.z; ++k) { ret[k].resize(_size.y); for (int i = 0; i < _size.y; ++i) { std::vector row; for (int j = 0; j < _size.x; ++j) { row.push_back(_data[calculate_index(i, j, 1)]); } ret[k][i] = row; } } return ret; } MLPPTensor3::MLPPTensor3(const std::vector>> &p_from) { _data = NULL; set_from_std_vectors(p_from); } void MLPPTensor3::_bind_methods() { /* ClassDB::bind_method(D_METHOD("add_row", "row"), &MLPPTensor3::add_row_pool_vector); ClassDB::bind_method(D_METHOD("add_row_mlpp_vector", "row"), &MLPPTensor3::add_row_mlpp_vector); ClassDB::bind_method(D_METHOD("add_rows_mlpp_matrix", "other"), &MLPPTensor3::add_rows_mlpp_matrix); ClassDB::bind_method(D_METHOD("remove_row", "index"), &MLPPTensor3::remove_row); ClassDB::bind_method(D_METHOD("remove_row_unordered", "index"), &MLPPTensor3::remove_row_unordered); ClassDB::bind_method(D_METHOD("swap_row", "index_1", "index_2"), &MLPPTensor3::swap_row); ClassDB::bind_method(D_METHOD("clear"), &MLPPTensor3::clear); ClassDB::bind_method(D_METHOD("reset"), &MLPPTensor3::reset); ClassDB::bind_method(D_METHOD("empty"), &MLPPTensor3::empty); ClassDB::bind_method(D_METHOD("data_size"), &MLPPTensor3::data_size); ClassDB::bind_method(D_METHOD("size"), &MLPPTensor3::size); ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPTensor3::resize); ClassDB::bind_method(D_METHOD("get_element_index", "index"), &MLPPTensor3::get_element_index); ClassDB::bind_method(D_METHOD("set_element_index", "index", "val"), &MLPPTensor3::set_element_index); ClassDB::bind_method(D_METHOD("get_element", "index_x", "index_y"), &MLPPTensor3::get_element); ClassDB::bind_method(D_METHOD("set_element", "index_x", "index_y", "val"), &MLPPTensor3::set_element); ClassDB::bind_method(D_METHOD("get_row_pool_vector", "index_y"), &MLPPTensor3::get_row_pool_vector); ClassDB::bind_method(D_METHOD("get_row_mlpp_vector", "index_y"), &MLPPTensor3::get_row_mlpp_vector); ClassDB::bind_method(D_METHOD("get_row_into_mlpp_vector", "index_y", "target"), &MLPPTensor3::get_row_into_mlpp_vector); ClassDB::bind_method(D_METHOD("set_row_pool_vector", "index_y", "row"), &MLPPTensor3::set_row_pool_vector); ClassDB::bind_method(D_METHOD("set_row_mlpp_vector", "index_y", "row"), &MLPPTensor3::set_row_mlpp_vector); ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPTensor3::fill); ClassDB::bind_method(D_METHOD("to_flat_pool_vector"), &MLPPTensor3::to_flat_pool_vector); ClassDB::bind_method(D_METHOD("to_flat_byte_array"), &MLPPTensor3::to_flat_byte_array); ClassDB::bind_method(D_METHOD("duplicate"), &MLPPTensor3::duplicate); ClassDB::bind_method(D_METHOD("set_from_mlpp_vectors_array", "from"), &MLPPTensor3::set_from_mlpp_vectors_array); ClassDB::bind_method(D_METHOD("set_from_arrays", "from"), &MLPPTensor3::set_from_arrays); ClassDB::bind_method(D_METHOD("set_from_mlpp_matrix", "from"), &MLPPTensor3::set_from_mlpp_matrix); ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPTensor3::is_equal_approx, CMP_EPSILON); */ }