#ifndef MLPP_MATRIX_H #define MLPP_MATRIX_H #include "core/math/math_defs.h" #include "core/containers/pool_vector.h" #include "core/containers/sort_array.h" #include "core/containers/vector.h" #include "core/error/error_macros.h" #include "core/math/vector2i.h" #include "core/os/memory.h" #include "core/object/reference.h" #include "mlpp_vector.h" class MLPPMatrix : public Reference { GDCLASS(MLPPMatrix, Reference); public: real_t *ptrw() { return _data; } const real_t *ptr() const { return _data; } _FORCE_INLINE_ void add_row(const Vector &p_row) { if (p_row.size() == 0) { return; } if (_size.x == 0) { _size.x = p_row.size(); } ERR_FAIL_COND(_size.x != p_row.size()); int ci = data_size(); ++_size.y; _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); const real_t *row_arr = p_row.ptr(); for (int i = 0; i < p_row.size(); ++i) { _data[ci + i] = row_arr[i]; } } _FORCE_INLINE_ void add_row_pool_vector(const PoolRealArray &p_row) { if (p_row.size() == 0) { return; } if (_size.x == 0) { _size.x = p_row.size(); } ERR_FAIL_COND(_size.x != p_row.size()); int ci = data_size(); ++_size.y; _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); PoolRealArray::Read rread = p_row.read(); const real_t *row_arr = rread.ptr(); for (int i = 0; i < p_row.size(); ++i) { _data[ci + i] = row_arr[i]; } } _FORCE_INLINE_ void add_row_mlpp_vector(const Ref &p_row) { ERR_FAIL_COND(!p_row.is_valid()); int p_row_size = p_row->size(); if (p_row_size == 0) { return; } if (_size.x == 0) { _size.x = p_row_size; } ERR_FAIL_COND(_size.x != p_row_size); int ci = data_size(); ++_size.y; _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); const real_t *row_ptr = p_row->ptr(); for (int i = 0; i < p_row_size; ++i) { _data[ci + i] = row_ptr[i]; } } _FORCE_INLINE_ void add_rows_mlpp_matrix(const Ref &p_other) { ERR_FAIL_COND(!p_other.is_valid()); int other_data_size = p_other->data_size(); if (other_data_size == 0) { return; } Size2i other_size = p_other->size(); if (_size.x == 0) { _size.x = other_size.x; } ERR_FAIL_COND(other_size.x != _size.x); int start_offset = data_size(); _size.y += other_size.y; _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); const real_t *other_ptr = p_other->ptr(); for (int i = 0; i < other_data_size; ++i) { _data[start_offset + i] = other_ptr[i]; } } void remove_row(int p_index) { ERR_FAIL_INDEX(p_index, _size.y); --_size.y; int ds = data_size(); if (ds == 0) { memfree(_data); _data = NULL; return; } for (int i = p_index * _size.x; i < ds; ++i) { _data[i] = _data[i + _size.x]; } _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } // Removes the item copying the last value into the position of the one to // remove. It's generally faster than `remove`. void remove_row_unordered(int p_index) { ERR_FAIL_INDEX(p_index, _size.y); --_size.y; int ds = data_size(); if (ds == 0) { memfree(_data); _data = NULL; return; } int start_ind = p_index * _size.x; int end_ind = (p_index + 1) * _size.x; for (int i = start_ind; i < end_ind; ++i) { _data[i] = _data[ds + i]; } _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } void swap_row(int p_index_1, int p_index_2) { ERR_FAIL_INDEX(p_index_1, _size.y); ERR_FAIL_INDEX(p_index_2, _size.y); int ind1_start = p_index_1 * _size.x; int ind2_start = p_index_2 * _size.x; for (int i = 0; i < _size.x; ++i) { SWAP(_data[ind1_start + i], _data[ind2_start + i]); } } _FORCE_INLINE_ void clear() { resize(Size2i()); } _FORCE_INLINE_ void reset() { if (_data) { memfree(_data); _data = NULL; _size = Vector2i(); } } _FORCE_INLINE_ bool empty() const { return data_size() == 0; } _FORCE_INLINE_ int data_size() const { return _size.x * _size.y; } _FORCE_INLINE_ Size2i size() const { return _size; } void resize(const Size2i &p_size) { _size = p_size; int ds = data_size(); if (ds == 0) { if (_data) { memfree(_data); _data = NULL; } return; } _data = (real_t *)memrealloc(_data, ds * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } _FORCE_INLINE_ int calculate_index(int p_index_y, int p_index_x) const { return p_index_y * _size.x + p_index_x; } _FORCE_INLINE_ const real_t &operator[](int p_index) const { CRASH_BAD_INDEX(p_index, data_size()); return _data[p_index]; } _FORCE_INLINE_ real_t &operator[](int p_index) { CRASH_BAD_INDEX(p_index, data_size()); return _data[p_index]; } _FORCE_INLINE_ real_t get_element_index(int p_index) const { ERR_FAIL_INDEX_V(p_index, data_size(), 0); return _data[p_index]; } _FORCE_INLINE_ void set_element_index(int p_index, real_t p_val) { ERR_FAIL_INDEX(p_index, data_size()); _data[p_index] = p_val; } _FORCE_INLINE_ real_t get_element(int p_index_y, int p_index_x) const { ERR_FAIL_INDEX_V(p_index_x, _size.x, 0); ERR_FAIL_INDEX_V(p_index_y, _size.y, 0); return _data[p_index_y * _size.x + p_index_x]; } _FORCE_INLINE_ void set_element(int p_index_y, int p_index_x, real_t p_val) { ERR_FAIL_INDEX(p_index_x, _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); _data[p_index_y * _size.x + p_index_x] = p_val; } _FORCE_INLINE_ Vector get_row_vector(int p_index_y) { ERR_FAIL_INDEX_V(p_index_y, _size.y, Vector()); Vector ret; if (unlikely(_size.x == 0)) { return ret; } ret.resize(_size.x); int ind_start = p_index_y * _size.x; real_t *row_ptr = ret.ptrw(); for (int i = 0; i < _size.x; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } _FORCE_INLINE_ PoolRealArray get_row_pool_vector(int p_index_y) { ERR_FAIL_INDEX_V(p_index_y, _size.y, PoolRealArray()); PoolRealArray ret; if (unlikely(_size.x == 0)) { return ret; } ret.resize(_size.x); int ind_start = p_index_y * _size.x; PoolRealArray::Write w = ret.write(); real_t *row_ptr = w.ptr(); for (int i = 0; i < _size.x; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } _FORCE_INLINE_ Ref get_row_mlpp_vector(int p_index_y) { ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref()); Ref ret; ret.instance(); if (unlikely(_size.x == 0)) { return ret; } ret->resize(_size.x); int ind_start = p_index_y * _size.x; real_t *row_ptr = ret->ptrw(); for (int i = 0; i < _size.x; ++i) { row_ptr[i] = _data[ind_start + i]; } return ret; } _FORCE_INLINE_ void get_row_into_mlpp_vector(int p_index_y, Ref target) const { ERR_FAIL_COND(!target.is_valid()); ERR_FAIL_INDEX(p_index_y, _size.y); if (unlikely(target->size() != _size.x)) { target->resize(_size.x); } int ind_start = p_index_y * _size.x; real_t *row_ptr = target->ptrw(); for (int i = 0; i < _size.x; ++i) { row_ptr[i] = _data[ind_start + i]; } } _FORCE_INLINE_ void set_row_vector(int p_index_y, const Vector &p_row) { ERR_FAIL_COND(p_row.size() != _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); int ind_start = p_index_y * _size.x; const real_t *row_ptr = p_row.ptr(); for (int i = 0; i < _size.x; ++i) { _data[ind_start + i] = row_ptr[i]; } } _FORCE_INLINE_ void set_row_pool_vector(int p_index_y, const PoolRealArray &p_row) { ERR_FAIL_COND(p_row.size() != _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); int ind_start = p_index_y * _size.x; PoolRealArray::Read r = p_row.read(); const real_t *row_ptr = r.ptr(); for (int i = 0; i < _size.x; ++i) { _data[ind_start + i] = row_ptr[i]; } } _FORCE_INLINE_ void set_row_mlpp_vector(int p_index_y, const Ref &p_row) { ERR_FAIL_COND(!p_row.is_valid()); ERR_FAIL_COND(p_row->size() != _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); int ind_start = p_index_y * _size.x; const real_t *row_ptr = p_row->ptr(); for (int i = 0; i < _size.x; ++i) { _data[ind_start + i] = row_ptr[i]; } } void fill(real_t p_val) { if (!_data) { return; } int ds = data_size(); for (int i = 0; i < ds; ++i) { _data[i] = p_val; } } Vector to_flat_vector() const { Vector ret; ret.resize(data_size()); real_t *w = ret.ptrw(); memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } PoolRealArray to_flat_pool_vector() const { PoolRealArray pl; if (data_size()) { pl.resize(data_size()); typename PoolRealArray::Write w = pl.write(); real_t *dest = w.ptr(); for (int i = 0; i < data_size(); ++i) { dest[i] = static_cast(_data[i]); } } return pl; } Vector to_flat_byte_array() const { Vector ret; ret.resize(data_size() * sizeof(real_t)); uint8_t *w = ret.ptrw(); memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } Ref duplicate() const { Ref ret; ret.instance(); ret->set_from_mlpp_matrixr(*this); return ret; } _FORCE_INLINE_ void set_from_mlpp_matrix(const Ref &p_from) { ERR_FAIL_COND(!p_from.is_valid()); resize(p_from->size()); for (int i = 0; i < p_from->data_size(); ++i) { _data[i] = p_from->_data[i]; } } _FORCE_INLINE_ void set_from_mlpp_matrixr(const MLPPMatrix &p_from) { resize(p_from.size()); for (int i = 0; i < p_from.data_size(); ++i) { _data[i] = p_from._data[i]; } } _FORCE_INLINE_ void set_from_mlpp_vectors(const Vector> &p_from) { if (p_from.size() == 0) { reset(); return; } if (!p_from[0].is_valid()) { reset(); return; } resize(Size2i(p_from[0]->size(), p_from.size())); if (data_size() == 0) { reset(); return; } for (int i = 0; i < p_from.size(); ++i) { const Ref &r = p_from[i]; ERR_CONTINUE(!r.is_valid()); ERR_CONTINUE(r->size() != _size.x); int start_index = i * _size.x; const real_t *from_ptr = r->ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } _FORCE_INLINE_ void set_from_mlpp_vectors_array(const Array &p_from) { if (p_from.size() == 0) { reset(); return; } Ref v0 = p_from[0]; if (!v0.is_valid()) { reset(); return; } resize(Size2i(v0->size(), p_from.size())); if (data_size() == 0) { reset(); return; } for (int i = 0; i < p_from.size(); ++i) { Ref r = p_from[i]; ERR_CONTINUE(!r.is_valid()); ERR_CONTINUE(r->size() != _size.x); int start_index = i * _size.x; const real_t *from_ptr = r->ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } _FORCE_INLINE_ void set_from_vectors(const Vector> &p_from) { if (p_from.size() == 0) { reset(); return; } resize(Size2i(p_from[0].size(), p_from.size())); if (data_size() == 0) { reset(); return; } for (int i = 0; i < p_from.size(); ++i) { const Vector &r = p_from[i]; ERR_CONTINUE(r.size() != _size.x); int start_index = i * _size.x; const real_t *from_ptr = r.ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } _FORCE_INLINE_ void set_from_arrays(const Array &p_from) { if (p_from.size() == 0) { reset(); return; } PoolRealArray p0arr = p_from[0]; resize(Size2i(p0arr.size(), p_from.size())); if (data_size() == 0) { reset(); return; } for (int i = 0; i < p_from.size(); ++i) { PoolRealArray r = p_from[i]; ERR_CONTINUE(r.size() != _size.x); int start_index = i * _size.x; PoolRealArray::Read read = r.read(); const real_t *from_ptr = read.ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } _FORCE_INLINE_ bool is_equal_approx(const Ref &p_with, real_t tolerance = static_cast(CMP_EPSILON)) const { ERR_FAIL_COND_V(!p_with.is_valid(), false); if (unlikely(this == p_with.ptr())) { return true; } if (_size != p_with->size()) { return false; } int ds = data_size(); for (int i = 0; i < ds; ++i) { if (!Math::is_equal_approx(_data[i], p_with->_data[i], tolerance)) { return false; } } return true; } String to_string(); _FORCE_INLINE_ MLPPMatrix() { _data = NULL; } _FORCE_INLINE_ MLPPMatrix(const MLPPMatrix &p_from) { _data = NULL; resize(p_from.size()); for (int i = 0; i < p_from.data_size(); ++i) { _data[i] = p_from._data[i]; } } MLPPMatrix(const Vector> &p_from) { _data = NULL; set_from_vectors(p_from); } MLPPMatrix(const Array &p_from) { _data = NULL; set_from_arrays(p_from); } _FORCE_INLINE_ ~MLPPMatrix() { if (_data) { reset(); } } // TODO: These are temporary std::vector to_flat_std_vector() const; void set_from_std_vectors(const std::vector> &p_from); std::vector> to_std_vector(); void set_row_std_vector(int p_index_y, const std::vector &p_row); MLPPMatrix(const std::vector> &p_from); protected: static void _bind_methods(); protected: Size2i _size; real_t *_data; }; #endif