// // LinReg.cpp // // Created by Marc Melikyan on 10/2/20. // #include "lin_reg.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../stat/stat.h" #include "../utilities/utilities.h" #include #include #include /* Ref MLPPLinReg::get_input_set() { return _input_set; } void MLPPLinReg::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } Ref MLPPLinReg::get_output_set() { return _output_set; } void MLPPLinReg::set_output_set(const Ref &val) { _output_set = val; _initialized = false; } MLPPReg::RegularizationType MLPPLinReg::get_reg() { return _reg; } void MLPPLinReg::set_reg(const MLPPReg::RegularizationType val) { _reg = val; _initialized = false; } real_t MLPPLinReg::get_lambda() { return _lambda; } void MLPPLinReg::set_lambda(const real_t val) { _lambda = val; _initialized = false; } real_t MLPPLinReg::get_alpha() { return _alpha; } void MLPPLinReg::set_alpha(const real_t val) { _alpha = val; _initialized = false; } */ std::vector MLPPLinReg::model_set_test(std::vector> X) { ERR_FAIL_COND_V(!_initialized, std::vector()); return evaluatem(X); } real_t MLPPLinReg::model_test(std::vector x) { ERR_FAIL_COND_V(!_initialized, 0); return evaluatev(x); } void MLPPLinReg::newton_raphson(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); std::vector error = alg.subtraction(_y_hat, _output_set); // Calculating the weight gradients (2nd derivative) std::vector first_derivative = alg.mat_vec_mult(alg.transpose(_input_set), error); std::vector> second_derivative = alg.matmult(alg.transpose(_input_set), _input_set); _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(alg.inverse(second_derivative)), first_derivative))); _weights = regularization.regWeights(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients (2nd derivative) _bias -= learning_rate * alg.sum_elements(error) / _n; // We keep this the same. The 2nd derivative is just [1]. forward_pass(); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set)); MLPPUtilities::UI(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPLinReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); std::vector error = alg.subtraction(_y_hat, _output_set); // Calculating the weight gradients _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(_input_set), error))); _weights = regularization.regWeights(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / _n; forward_pass(); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set)); MLPPUtilities::UI(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPLinReg::sgd(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); while (true) { int outputIndex = distribution(generator); real_t y_hat = evaluatev(_input_set[outputIndex]); cost_prev = cost({ y_hat }, { _output_set[outputIndex] }); real_t error = y_hat - _output_set[outputIndex]; // Weight updation _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate * error, _input_set[outputIndex])); _weights = regularization.regWeights(_weights, _lambda, _alpha, _reg); // Bias updation _bias -= learning_rate * error; y_hat = evaluatev(_input_set[outputIndex]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost({ y_hat }, { _output_set[outputIndex] })); MLPPUtilities::UI(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto input_mini_batches = std::get<0>(batches); auto output_mini_batches = std::get<1>(batches); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = evaluatem(input_mini_batches[i]); cost_prev = cost(y_hat, output_mini_batches[i]); std::vector error = alg.subtraction(y_hat, output_mini_batches[i]); // Calculating the weight gradients _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / output_mini_batches[i].size(), alg.mat_vec_mult(alg.transpose(input_mini_batches[i]), error))); _weights = regularization.regWeights(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / output_mini_batches[i].size(); y_hat = evaluatem(input_mini_batches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i])); MLPPUtilities::UI(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto input_mini_batches = std::get<0>(batches); auto output_mini_batches = std::get<1>(batches); // Initializing necessary components for Momentum. std::vector v = alg.zerovec(_weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = evaluatem(input_mini_batches[i]); cost_prev = cost(y_hat, output_mini_batches[i]); std::vector error = alg.subtraction(y_hat, output_mini_batches[i]); // Calculating the weight gradients std::vector gradient = alg.scalarMultiply(1 / output_mini_batches[i].size(), alg.mat_vec_mult(alg.transpose(input_mini_batches[i]), error)); std::vector reg_deriv_term = regularization.regDerivTerm(_weights, _lambda, _alpha, _reg); std::vector weight_grad = alg.addition(gradient, reg_deriv_term); // Weight_grad_final v = alg.addition(alg.scalarMultiply(gamma, v), alg.scalarMultiply(learning_rate, weight_grad)); _weights = alg.subtraction(_weights, v); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / output_mini_batches[i].size(); // As normal y_hat = evaluatem(input_mini_batches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i])); MLPPUtilities::UI(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::nag(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto input_mini_batches = std::get<0>(batches); auto output_mini_batches = std::get<1>(batches); // Initializing necessary components for Momentum. std::vector v = alg.zerovec(_weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { _weights = alg.subtraction(_weights, alg.scalarMultiply(gamma, v)); // "Aposterori" calculation std::vector y_hat = evaluatem(input_mini_batches[i]); cost_prev = cost(y_hat, output_mini_batches[i]); std::vector error = alg.subtraction(y_hat, output_mini_batches[i]); // Calculating the weight gradients std::vector gradient = alg.scalarMultiply(1 / output_mini_batches[i].size(), alg.mat_vec_mult(alg.transpose(input_mini_batches[i]), error)); std::vector reg_deriv_term = regularization.regDerivTerm(_weights, _lambda, _alpha, _reg); std::vector weight_grad = alg.addition(gradient, reg_deriv_term); // Weight_grad_final v = alg.addition(alg.scalarMultiply(gamma, v), alg.scalarMultiply(learning_rate, weight_grad)); _weights = alg.subtraction(_weights, v); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / output_mini_batches[i].size(); // As normal y_hat = evaluatem(input_mini_batches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i])); MLPPUtilities::UI(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto input_mini_batches = std::get<0>(batches); auto output_mini_batches = std::get<1>(batches); // Initializing necessary components for Adagrad. std::vector v = alg.zerovec(_weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = evaluatem(input_mini_batches[i]); cost_prev = cost(y_hat, output_mini_batches[i]); std::vector error = alg.subtraction(y_hat, output_mini_batches[i]); // Calculating the weight gradients std::vector gradient = alg.scalarMultiply(1 / output_mini_batches[i].size(), alg.mat_vec_mult(alg.transpose(input_mini_batches[i]), error)); std::vector reg_deriv_term = regularization.regDerivTerm(_weights, _lambda, _alpha, _reg); std::vector weight_grad = alg.addition(gradient, reg_deriv_term); // Weight_grad_final v = alg.hadamard_product(weight_grad, weight_grad); _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(weight_grad, alg.sqrt(alg.scalarAdd(e, v))))); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / output_mini_batches[i].size(); // As normal y_hat = evaluatem(input_mini_batches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i])); MLPPUtilities::UI(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool ui) { ERR_FAIL_COND(!_initialized); // Adagrad upgrade. Momentum is applied. MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto input_mini_batches = std::get<0>(batches); auto output_mini_batches = std::get<1>(batches); // Initializing necessary components for Adagrad. std::vector v = alg.zerovec(_weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = evaluatem(input_mini_batches[i]); cost_prev = cost(y_hat, output_mini_batches[i]); std::vector error = alg.subtraction(y_hat, output_mini_batches[i]); // Calculating the weight gradients std::vector gradient = alg.scalarMultiply(1 / output_mini_batches[i].size(), alg.mat_vec_mult(alg.transpose(input_mini_batches[i]), error)); std::vector reg_deriv_term = regularization.regDerivTerm(_weights, _lambda, _alpha, _reg); std::vector weight_grad = alg.addition(gradient, reg_deriv_term); // Weight_grad_final v = alg.addition(alg.scalarMultiply(b1, v), alg.scalarMultiply(1 - b1, alg.hadamard_product(weight_grad, weight_grad))); _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(weight_grad, alg.sqrt(alg.scalarAdd(e, v))))); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / output_mini_batches[i].size(); // As normal y_hat = evaluatem(input_mini_batches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i])); MLPPUtilities::UI(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto input_mini_batches = std::get<0>(batches); auto output_mini_batches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector m = alg.zerovec(_weights.size()); std::vector v = alg.zerovec(_weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = evaluatem(input_mini_batches[i]); cost_prev = cost(y_hat, output_mini_batches[i]); std::vector error = alg.subtraction(y_hat, output_mini_batches[i]); // Calculating the weight gradients std::vector gradient = alg.scalarMultiply(1 / output_mini_batches[i].size(), alg.mat_vec_mult(alg.transpose(input_mini_batches[i]), error)); std::vector reg_deriv_term = regularization.regDerivTerm(_weights, _lambda, _alpha, _reg); std::vector weight_grad = alg.addition(gradient, reg_deriv_term); // Weight_grad_final m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad)); v = alg.addition(alg.scalarMultiply(b2, v), alg.scalarMultiply(1 - b2, alg.exponentiate(weight_grad, 2))); std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); std::vector v_hat = alg.scalarMultiply(1 / (1 - pow(b2, epoch)), v); _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_hat, alg.scalarAdd(e, alg.sqrt(v_hat))))); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / output_mini_batches[i].size(); // As normal y_hat = evaluatem(input_mini_batches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i])); MLPPUtilities::UI(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto input_mini_batches = std::get<0>(batches); auto output_mini_batches = std::get<1>(batches); std::vector m = alg.zerovec(_weights.size()); std::vector u = alg.zerovec(_weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = evaluatem(input_mini_batches[i]); cost_prev = cost(y_hat, output_mini_batches[i]); std::vector error = alg.subtraction(y_hat, output_mini_batches[i]); // Calculating the weight gradients std::vector gradient = alg.scalarMultiply(1 / output_mini_batches[i].size(), alg.mat_vec_mult(alg.transpose(input_mini_batches[i]), error)); std::vector reg_deriv_term = regularization.regDerivTerm(_weights, _lambda, _alpha, _reg); std::vector weight_grad = alg.addition(gradient, reg_deriv_term); // Weight_grad_final m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad)); u = alg.max(alg.scalarMultiply(b2, u), alg.abs(weight_grad)); std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_hat, u))); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / output_mini_batches[i].size(); // As normal y_hat = evaluatem(input_mini_batches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i])); MLPPUtilities::UI(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch); auto input_mini_batches = std::get<0>(batches); auto output_mini_batches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector m = alg.zerovec(_weights.size()); std::vector v = alg.zerovec(_weights.size()); std::vector m_final = alg.zerovec(_weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = evaluatem(input_mini_batches[i]); cost_prev = cost(y_hat, output_mini_batches[i]); std::vector error = alg.subtraction(y_hat, output_mini_batches[i]); // Calculating the weight gradients std::vector gradient = alg.scalarMultiply(1 / output_mini_batches[i].size(), alg.mat_vec_mult(alg.transpose(input_mini_batches[i]), error)); std::vector reg_deriv_term = regularization.regDerivTerm(_weights, _lambda, _alpha, _reg); std::vector weight_grad = alg.addition(gradient, reg_deriv_term); // Weight_grad_final m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad)); v = alg.addition(alg.scalarMultiply(b2, v), alg.scalarMultiply(1 - b2, alg.exponentiate(weight_grad, 2))); m_final = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply((1 - b1) / (1 - pow(b1, epoch)), weight_grad)); std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); std::vector v_hat = alg.scalarMultiply(1 / (1 - pow(b2, epoch)), v); _weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_final, alg.scalarAdd(e, alg.sqrt(v_hat))))); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elements(error) / output_mini_batches[i].size(); // As normal y_hat = evaluatem(input_mini_batches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i])); MLPPUtilities::UI(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLinReg::normal_equation() { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPStat stat; std::vector x_means; std::vector> _input_setT = alg.transpose(_input_set); x_means.resize(_input_setT.size()); for (uint32_t i = 0; i < _input_setT.size(); i++) { x_means[i] = (stat.mean(_input_setT[i])); } std::vector temp; temp.resize(_k); temp = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(_input_set), _input_set)), alg.mat_vec_mult(alg.transpose(_input_set), _output_set)); ERR_FAIL_COND_MSG(std::isnan(temp[0]), "ERR: Resulting matrix was noninvertible/degenerate, and so the normal equation could not be performed. Try utilizing gradient descent."); if (_reg == "Ridge") { _weights = alg.mat_vec_mult(alg.inverse(alg.addition(alg.matmult(alg.transpose(_input_set), _input_set), alg.scalarMultiply(_lambda, alg.identity(_k)))), alg.mat_vec_mult(alg.transpose(_input_set), _output_set)); } else { _weights = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(_input_set), _input_set)), alg.mat_vec_mult(alg.transpose(_input_set), _output_set)); } _bias = stat.mean(_output_set) - alg.dot(_weights, x_means); forward_pass(); } real_t MLPPLinReg::score() { ERR_FAIL_COND_V(!_initialized, 0); MLPPUtilities util; return util.performance(_y_hat, _output_set); } void MLPPLinReg::save(std::string fileName) { ERR_FAIL_COND(!_initialized); MLPPUtilities util; util.saveParameters(fileName, _weights, _bias); } bool MLPPLinReg::is_initialized() { return _initialized; } void MLPPLinReg::initialize() { if (_initialized) { return; } //ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); _initialized = true; } MLPPLinReg::MLPPLinReg(std::vector> p_input_set, std::vector p_output_set, std::string p_reg, real_t p_lambda, real_t p_alpha) { _input_set = p_input_set; _output_set = p_output_set; _n = p_input_set.size(); _k = p_input_set[0].size(); _reg = p_reg; _lambda = p_lambda; _alpha = p_alpha; _y_hat.resize(_n); _weights = MLPPUtilities::weightInitialization(_k); _bias = MLPPUtilities::biasInitialization(); _initialized = true; } MLPPLinReg::MLPPLinReg() { _initialized = false; } MLPPLinReg::~MLPPLinReg() { } real_t MLPPLinReg::cost(std::vector y_hat, std::vector y) { MLPPReg regularization; MLPPCost mlpp_cost; return mlpp_cost.MSE(y_hat, y) + regularization.regTerm(_weights, _lambda, _alpha, _reg); } real_t MLPPLinReg::evaluatev(std::vector x) { MLPPLinAlg alg; return alg.dot(_weights, x) + _bias; } std::vector MLPPLinReg::evaluatem(std::vector> X) { MLPPLinAlg alg; return alg.scalarAdd(_bias, alg.mat_vec_mult(X, _weights)); } // wTx + b void MLPPLinReg::forward_pass() { _y_hat = evaluatem(_input_set); } void MLPPLinReg::_bind_methods() { /* ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPLinReg::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPLinReg::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPLinReg::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPLinReg::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPLinReg::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPLinReg::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPLinReg::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPLinReg::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPLinReg::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPLinReg::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPLinReg::model_test); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPLinReg::model_set_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPLinReg::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPLinReg::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPLinReg::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPLinReg::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPLinReg::save); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPLinReg::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPLinReg::initialize); */ }