// // Reg.cpp // // Created by Marc Melikyan on 1/16/21. // #include "cost_old.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include #include real_t MLPPCostOld::msev(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_size; ++i) { sum += (y_hat_ptr[i] - y_ptr[i]) * (y_hat_ptr[i] - y_ptr[i]); } return sum / 2 * y_hat_size; } real_t MLPPCostOld::msem(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_data_size; ++i) { sum += (y_hat_ptr[i] - y_ptr[i]) * (y_hat_ptr[i] - y_ptr[i]); } return sum / 2.0 * static_cast(y_hat_data_size); } Ref MLPPCostOld::mse_derivv(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.subtractionnv(y_hat, y); } Ref MLPPCostOld::mse_derivm(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.subtractionm(y_hat, y); } real_t MLPPCostOld::rmsev(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_size; ++i) { sum += (y_hat_ptr[i] - y_ptr[i]) * (y_hat_ptr[i] - y_ptr[i]); } return Math::sqrt(sum / static_cast(y_hat_size)); } real_t MLPPCostOld::rmsem(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_data_size; ++i) { sum += (y_hat_ptr[i] - y_ptr[i]) * (y_hat_ptr[i] - y_ptr[i]); } return Math::sqrt(sum / static_cast(y_hat->size().y)); } Ref MLPPCostOld::rmse_derivv(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.scalar_multiplynv(1 / (2.0 * Math::sqrt(msev(y_hat, y))), mse_derivv(y_hat, y)); } Ref MLPPCostOld::rmse_derivm(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.scalar_multiplym(1 / (2.0 / Math::sqrt(msem(y_hat, y))), mse_derivm(y_hat, y)); } real_t MLPPCostOld::maev(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_size; i++) { sum += ABS((y_hat_ptr[i] - y_ptr[i])); } return sum / static_cast(y_hat_size); } real_t MLPPCostOld::maem(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_data_size; ++i) { sum += ABS((y_hat_ptr[i] - y_ptr[i])); } return sum / static_cast(y_hat_data_size); } Ref MLPPCostOld::mae_derivv(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); const real_t *y_hat_ptr = y_hat->ptr(); Ref deriv; deriv.instance(); deriv->resize(y_hat_size); real_t *deriv_ptr = deriv->ptrw(); for (int i = 0; i < y_hat_size; ++i) { int y_hat_ptr_i = y_hat_ptr[i]; if (y_hat_ptr_i < 0) { deriv_ptr[i] = -1; } else if (y_hat_ptr_i == 0) { deriv_ptr[i] = 0; } else { deriv_ptr[i] = 1; } } return deriv; } Ref MLPPCostOld::mae_derivm(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); const real_t *y_hat_ptr = y_hat->ptr(); Ref deriv; deriv.instance(); deriv->resize(y_hat->size()); real_t *deriv_ptr = deriv->ptrw(); for (int i = 0; i < y_hat_data_size; ++i) { int y_hat_ptr_i = y_hat_ptr[i]; if (y_hat_ptr_i < 0) { deriv_ptr[i] = -1; } else if (y_hat_ptr_i == 0) { deriv_ptr[i] = 0; } else { deriv_ptr[i] = 1; } } return deriv; } real_t MLPPCostOld::mbev(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_size; ++i) { sum += (y_hat_ptr[i] - y_ptr[i]); } return sum / static_cast(y_hat_size); } real_t MLPPCostOld::mbem(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_data_size; ++i) { sum += (y_hat_ptr[i] - y_ptr[i]); } return sum / static_cast(y_hat_data_size); } Ref MLPPCostOld::mbe_derivv(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.onevecv(y_hat->size()); } Ref MLPPCostOld::mbe_derivm(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.onematm(y_hat->size().x, y_hat->size().y); } // Classification Costs real_t MLPPCostOld::log_lossv(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; real_t eps = 1e-8; for (int i = 0; i < y_hat_size; ++i) { sum += -(y_ptr[i] * Math::log(y_hat_ptr[i] + eps) + (1 - y_ptr[i]) * Math::log(1 - y_hat_ptr[i] + eps)); } return sum / static_cast(y_hat_size); } real_t MLPPCostOld::log_lossm(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; real_t eps = 1e-8; for (int i = 0; i < y_hat_data_size; ++i) { sum += -(y_ptr[i] * Math::log(y_hat_ptr[i] + eps) + (1 - y_ptr[i]) * Math::log(1 - y_hat_ptr[i] + eps)); } return sum / static_cast(y_hat_data_size); } Ref MLPPCostOld::log_loss_derivv(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.additionnv( alg.scalar_multiplynv(-1, alg.element_wise_division(y, y_hat)), alg.element_wise_division(alg.scalar_multiplynv(-1, alg.scalar_addnv(-1, y)), alg.scalar_multiplynv(-1, alg.scalar_addnv(-1, y_hat)))); } Ref MLPPCostOld::log_loss_derivm(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.additionm( alg.scalar_multiplym(-1, alg.element_wise_divisionm(y, y_hat)), alg.element_wise_divisionm(alg.scalar_multiplym(-1, alg.scalar_addm(-1, y)), alg.scalar_multiplym(-1, alg.scalar_addm(-1, y_hat)))); } real_t MLPPCostOld::cross_entropyv(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_size; ++i) { sum += y_ptr[i] * Math::log(y_hat_ptr[i]); } return -1 * sum; } real_t MLPPCostOld::cross_entropym(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_data_size; ++i) { sum += y_ptr[i] * Math::log(y_hat_ptr[i]); } return -1 * sum; } Ref MLPPCostOld::cross_entropy_derivv(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.scalar_multiplynv(-1, alg.element_wise_division(y, y_hat)); } Ref MLPPCostOld::cross_entropy_derivm(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.scalar_multiplym(-1, alg.element_wise_divisionm(y, y_hat)); } real_t MLPPCostOld::huber_lossv(const Ref &y_hat, const Ref &y, real_t delta) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); MLPPLinAlg alg; real_t sum = 0; for (int i = 0; i < y_hat_size; ++i) { if (ABS(y_ptr[i] - y_hat_ptr[i]) <= delta) { sum += (y_ptr[i] - y_hat_ptr[i]) * (y_ptr[i] - y_hat_ptr[i]); } else { sum += 2 * delta * ABS(y_ptr[i] - y_hat_ptr[i]) - delta * delta; } } return sum; } real_t MLPPCostOld::huber_lossm(const Ref &y_hat, const Ref &y, real_t delta) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); MLPPLinAlg alg; real_t sum = 0; for (int i = 0; i < y_hat_data_size; ++i) { if (ABS(y_ptr[i] - y_hat_ptr[i]) <= delta) { sum += (y_ptr[i] - y_hat_ptr[i]) * (y_ptr[i] - y_hat_ptr[i]); } else { sum += 2 * delta * ABS(y_ptr[i] - y_hat_ptr[i]) - delta * delta; } } return sum; } Ref MLPPCostOld::huber_loss_derivv(const Ref &y_hat, const Ref &y, real_t delta) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); MLPPLinAlg alg; Ref deriv; deriv.instance(); deriv->resize(y_hat->size()); real_t *deriv_ptr = deriv->ptrw(); for (int i = 0; i < y_hat_size; ++i) { if (ABS(y_ptr[i] - y_hat_ptr[i]) <= delta) { deriv_ptr[i] = (-(y_ptr[i] - y_hat_ptr[i])); } else { if (y_hat_ptr[i] > 0 || y_hat_ptr[i] < 0) { deriv_ptr[i] = (2 * delta * (y_hat_ptr[i] / ABS(y_hat_ptr[i]))); } else { deriv_ptr[i] = (0); } } } return deriv; } Ref MLPPCostOld::huber_loss_derivm(const Ref &y_hat, const Ref &y, real_t delta) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); MLPPLinAlg alg; Ref deriv; deriv.instance(); deriv->resize(y_hat->size()); real_t *deriv_ptr = deriv->ptrw(); for (int i = 0; i < y_hat_data_size; ++i) { if (ABS(y_ptr[i] - y_hat_ptr[i]) <= delta) { deriv_ptr[i] = (-(y_ptr[i] - y_hat_ptr[i])); } else { if (y_hat_ptr[i] > 0 || y_hat_ptr[i] < 0) { deriv_ptr[i] = (2 * delta * (y_hat_ptr[i] / ABS(y_hat_ptr[i]))); } else { deriv_ptr[i] = (0); } } } return deriv; } real_t MLPPCostOld::hinge_lossv(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_size; ++i) { sum += MAX(0, 1 - y_ptr[i] * y_hat_ptr[i]); } return sum / static_cast(y_hat_size); } real_t MLPPCostOld::hinge_lossm(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_data_size; ++i) { sum += MAX(0, 1 - y_ptr[i] * y_hat_ptr[i]); } return sum / static_cast(y_hat_data_size); } Ref MLPPCostOld::hinge_loss_derivv(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); Ref deriv; deriv.instance(); deriv->resize(y_hat->size()); real_t *deriv_ptr = deriv->ptrw(); for (int i = 0; i < y_hat_size; ++i) { if (1 - y_ptr[i] * y_hat_ptr[i] > 0) { deriv_ptr[i] = -y_ptr[i]; } else { deriv_ptr[i] = 0; } } return deriv; } Ref MLPPCostOld::hinge_loss_derivm(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); Ref deriv; deriv.instance(); deriv->resize(y_hat->size()); real_t *deriv_ptr = deriv->ptrw(); for (int i = 0; i < y_hat_data_size; ++i) { if (1 - y_ptr[i] * y_hat_ptr[i] > 0) { deriv_ptr[i] = -y_ptr[i]; } else { deriv_ptr[i] = 0; } } return deriv; } real_t MLPPCostOld::hinge_losswv(const Ref &y_hat, const Ref &y, const Ref &weights, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return C * hinge_lossv(y_hat, y) + regularization.reg_termv(weights, 1, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE); } real_t MLPPCostOld::hinge_losswm(const Ref &y_hat, const Ref &y, const Ref &weights, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return C * hinge_lossm(y_hat, y) + regularization.reg_termv(weights, 1, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE); } Ref MLPPCostOld::hinge_loss_derivwv(const Ref &y_hat, const Ref &y, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return alg.scalar_multiplynv(C, hinge_loss_derivv(y_hat, y)); } Ref MLPPCostOld::hinge_loss_derivwm(const Ref &y_hat, const Ref &y, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return alg.scalar_multiplym(C, hinge_loss_derivm(y_hat, y)); } real_t MLPPCostOld::wasserstein_lossv(const Ref &y_hat, const Ref &y) { int y_hat_size = y_hat->size(); ERR_FAIL_COND_V(y_hat_size != y->size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_size; ++i) { sum += y_hat_ptr[i] * y_ptr[i]; } return -sum / static_cast(y_hat_size); } real_t MLPPCostOld::wasserstein_lossm(const Ref &y_hat, const Ref &y) { int y_hat_data_size = y_hat->data_size(); ERR_FAIL_COND_V(y_hat_data_size != y->data_size(), 0); const real_t *y_hat_ptr = y_hat->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < y_hat_data_size; ++i) { sum += y_hat_ptr[i] * y_ptr[i]; } return -sum / static_cast(y_hat_data_size); } Ref MLPPCostOld::wasserstein_loss_derivv(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.scalar_multiplynv(-1, y); // Simple. } Ref MLPPCostOld::wasserstein_loss_derivm(const Ref &y_hat, const Ref &y) { MLPPLinAlg alg; return alg.scalar_multiplym(-1, y); // Simple. } real_t MLPPCostOld::dual_form_svm(const Ref &alpha, const Ref &X, const Ref &y) { MLPPLinAlg alg; Ref Y = alg.diagm(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y. Ref K = alg.matmultm(X, alg.transposem(X)); // TO DO: DON'T forget to add non-linear kernelizations. Ref Q = alg.matmultm(alg.matmultm(alg.transposem(Y), K), Y); Ref alpha_m; alpha_m.instance(); alpha_m->resize(Size2i(alpha->size(), 1)); alpha_m->set_row_mlpp_vector(0, alpha); Ref alpha_m_res = alg.matmultm(alg.matmultm(alpha_m, Q), alg.transposem(alpha_m)); real_t alphaQ = alpha_m_res->get_element(0, 0); Ref one = alg.onevecv(alpha->size()); return -alg.dotv(one, alpha) + 0.5 * alphaQ; } Ref MLPPCostOld::dual_form_svm_deriv(const Ref &alpha, const Ref &X, const Ref &y) { MLPPLinAlg alg; Ref Y = alg.diagm(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y. Ref K = alg.matmultm(X, alg.transposem(X)); // TO DO: DON'T forget to add non-linear kernelizations. Ref Q = alg.matmultm(alg.matmultm(alg.transposem(Y), K), Y); Ref alphaQDeriv = alg.mat_vec_multv(Q, alpha); Ref one = alg.onevecv(alpha->size()); return alg.subtractionm(alphaQDeriv, one); } MLPPCostOld::VectorCostFunctionPointer MLPPCostOld::get_cost_function_ptr_normal_vector(const MLPPCostOld::CostTypes cost) { switch (cost) { case COST_TYPE_MSE: return &MLPPCostOld::msev; case COST_TYPE_RMSE: return &MLPPCostOld::rmsev; case COST_TYPE_MAE: return &MLPPCostOld::maev; case COST_TYPE_MBE: return &MLPPCostOld::mbev; case COST_TYPE_LOGISTIC_LOSS: return &MLPPCostOld::log_lossv; case COST_TYPE_CROSS_ENTROPY: return &MLPPCostOld::cross_entropyv; case COST_TYPE_HINGE_LOSS: return &MLPPCostOld::hinge_lossv; case COST_TYPE_WASSERSTEIN_LOSS: return &MLPPCostOld::wasserstein_lossv; default: return NULL; } } MLPPCostOld::MatrixCostFunctionPointer MLPPCostOld::get_cost_function_ptr_normal_matrix(const MLPPCostOld::CostTypes cost) { switch (cost) { case COST_TYPE_MSE: return &MLPPCostOld::msem; case COST_TYPE_RMSE: return &MLPPCostOld::rmsem; case COST_TYPE_MAE: return &MLPPCostOld::maem; case COST_TYPE_MBE: return &MLPPCostOld::mbem; case COST_TYPE_LOGISTIC_LOSS: return &MLPPCostOld::log_lossm; case COST_TYPE_CROSS_ENTROPY: return &MLPPCostOld::cross_entropym; case COST_TYPE_HINGE_LOSS: return &MLPPCostOld::hinge_lossm; case COST_TYPE_WASSERSTEIN_LOSS: return &MLPPCostOld::wasserstein_lossm; default: return NULL; } } MLPPCostOld::VectorDerivCostFunctionPointer MLPPCostOld::get_cost_function_ptr_deriv_vector(const MLPPCostOld::CostTypes cost) { switch (cost) { case COST_TYPE_MSE: return &MLPPCostOld::mse_derivv; case COST_TYPE_RMSE: return &MLPPCostOld::rmse_derivv; case COST_TYPE_MAE: return &MLPPCostOld::mae_derivv; case COST_TYPE_MBE: return &MLPPCostOld::mbe_derivv; case COST_TYPE_LOGISTIC_LOSS: return &MLPPCostOld::log_loss_derivv; case COST_TYPE_CROSS_ENTROPY: return &MLPPCostOld::cross_entropy_derivv; case COST_TYPE_HINGE_LOSS: return &MLPPCostOld::hinge_loss_derivv; case COST_TYPE_WASSERSTEIN_LOSS: return &MLPPCostOld::wasserstein_loss_derivv; default: return NULL; } } MLPPCostOld::MatrixDerivCostFunctionPointer MLPPCostOld::get_cost_function_ptr_deriv_matrix(const MLPPCostOld::CostTypes cost) { switch (cost) { case COST_TYPE_MSE: return &MLPPCostOld::mse_derivm; case COST_TYPE_RMSE: return &MLPPCostOld::rmse_derivm; case COST_TYPE_MAE: return &MLPPCostOld::mae_derivm; case COST_TYPE_MBE: return &MLPPCostOld::mbe_derivm; case COST_TYPE_LOGISTIC_LOSS: return &MLPPCostOld::log_loss_derivm; case COST_TYPE_CROSS_ENTROPY: return &MLPPCostOld::cross_entropy_derivm; case COST_TYPE_HINGE_LOSS: return &MLPPCostOld::hinge_loss_derivm; case COST_TYPE_WASSERSTEIN_LOSS: return &MLPPCostOld::wasserstein_loss_derivm; default: return NULL; } } real_t MLPPCostOld::run_cost_norm_vector(const CostTypes cost, const Ref &y_hat, const Ref &y) { switch (cost) { case COST_TYPE_MSE: return msev(y_hat, y); case COST_TYPE_RMSE: return rmsev(y_hat, y); case COST_TYPE_MAE: return maev(y_hat, y); case COST_TYPE_MBE: return mbev(y_hat, y); case COST_TYPE_LOGISTIC_LOSS: return log_lossv(y_hat, y); case COST_TYPE_CROSS_ENTROPY: return cross_entropyv(y_hat, y); case COST_TYPE_HINGE_LOSS: return hinge_lossv(y_hat, y); case COST_TYPE_WASSERSTEIN_LOSS: return wasserstein_lossv(y_hat, y); default: return 0; } } real_t MLPPCostOld::run_cost_norm_matrix(const CostTypes cost, const Ref &y_hat, const Ref &y) { switch (cost) { case COST_TYPE_MSE: return msem(y_hat, y); case COST_TYPE_RMSE: return rmsem(y_hat, y); case COST_TYPE_MAE: return maem(y_hat, y); case COST_TYPE_MBE: return mbem(y_hat, y); case COST_TYPE_LOGISTIC_LOSS: return log_lossm(y_hat, y); case COST_TYPE_CROSS_ENTROPY: return cross_entropym(y_hat, y); case COST_TYPE_HINGE_LOSS: return hinge_lossm(y_hat, y); case COST_TYPE_WASSERSTEIN_LOSS: return wasserstein_lossm(y_hat, y); default: return 0; } } Ref MLPPCostOld::run_cost_deriv_vector(const CostTypes cost, const Ref &y_hat, const Ref &y) { switch (cost) { case COST_TYPE_MSE: return mse_derivv(y_hat, y); case COST_TYPE_RMSE: return rmse_derivv(y_hat, y); case COST_TYPE_MAE: return mae_derivv(y_hat, y); case COST_TYPE_MBE: return mbe_derivv(y_hat, y); case COST_TYPE_LOGISTIC_LOSS: return log_loss_derivv(y_hat, y); case COST_TYPE_CROSS_ENTROPY: return cross_entropy_derivv(y_hat, y); case COST_TYPE_HINGE_LOSS: return hinge_loss_derivv(y_hat, y); case COST_TYPE_WASSERSTEIN_LOSS: return wasserstein_loss_derivv(y_hat, y); default: return Ref(); } } Ref MLPPCostOld::run_cost_deriv_matrix(const CostTypes cost, const Ref &y_hat, const Ref &y) { switch (cost) { case COST_TYPE_MSE: return mse_derivm(y_hat, y); case COST_TYPE_RMSE: return rmse_derivm(y_hat, y); case COST_TYPE_MAE: return mae_derivm(y_hat, y); case COST_TYPE_MBE: return mbe_derivm(y_hat, y); case COST_TYPE_LOGISTIC_LOSS: return log_loss_derivm(y_hat, y); case COST_TYPE_CROSS_ENTROPY: return cross_entropy_derivm(y_hat, y); case COST_TYPE_HINGE_LOSS: return hinge_loss_derivm(y_hat, y); case COST_TYPE_WASSERSTEIN_LOSS: return wasserstein_loss_derivm(y_hat, y); default: return Ref(); } } // ====== OLD ====== real_t MLPPCostOld::MSE(std::vector y_hat, std::vector y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]); } return sum / 2 * y_hat.size(); } real_t MLPPCostOld::MSE(std::vector> y_hat, std::vector> y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { sum += (y_hat[i][j] - y[i][j]) * (y_hat[i][j] - y[i][j]); } } return sum / 2 * y_hat.size(); } std::vector MLPPCostOld::MSEDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.subtraction(y_hat, y); } std::vector> MLPPCostOld::MSEDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.subtraction(y_hat, y); } real_t MLPPCostOld::RMSE(std::vector y_hat, std::vector y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]); } return sqrt(sum / y_hat.size()); } real_t MLPPCostOld::RMSE(std::vector> y_hat, std::vector> y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { sum += (y_hat[i][j] - y[i][j]) * (y_hat[i][j] - y[i][j]); } } return sqrt(sum / y_hat.size()); } std::vector MLPPCostOld::RMSEDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.scalarMultiply(1 / (2 * sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y)); } std::vector> MLPPCostOld::RMSEDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.scalarMultiply(1 / (2 / sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y)); } real_t MLPPCostOld::MAE(std::vector y_hat, std::vector y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { sum += abs((y_hat[i] - y[i])); } return sum / y_hat.size(); } real_t MLPPCostOld::MAE(std::vector> y_hat, std::vector> y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { sum += abs((y_hat[i][j] - y[i][j])); } } return sum / y_hat.size(); } std::vector MLPPCostOld::MAEDeriv(std::vector y_hat, std::vector y) { std::vector deriv; deriv.resize(y_hat.size()); for (uint32_t i = 0; i < deriv.size(); i++) { if (y_hat[i] < 0) { deriv[i] = -1; } else if (y_hat[i] == 0) { deriv[i] = 0; } else { deriv[i] = 1; } } return deriv; } std::vector> MLPPCostOld::MAEDeriv(std::vector> y_hat, std::vector> y) { std::vector> deriv; deriv.resize(y_hat.size()); for (uint32_t i = 0; i < deriv.size(); i++) { deriv.resize(y_hat[i].size()); } for (uint32_t i = 0; i < deriv.size(); i++) { for (uint32_t j = 0; j < deriv[i].size(); j++) { if (y_hat[i][j] < 0) { deriv[i][j] = -1; } else if (y_hat[i][j] == 0) { deriv[i][j] = 0; } else { deriv[i][j] = 1; } } } return deriv; } real_t MLPPCostOld::MBE(std::vector y_hat, std::vector y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { sum += (y_hat[i] - y[i]); } return sum / y_hat.size(); } real_t MLPPCostOld::MBE(std::vector> y_hat, std::vector> y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { sum += (y_hat[i][j] - y[i][j]); } } return sum / y_hat.size(); } std::vector MLPPCostOld::MBEDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.onevec(y_hat.size()); } std::vector> MLPPCostOld::MBEDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.onemat(y_hat.size(), y_hat[0].size()); } real_t MLPPCostOld::LogLoss(std::vector y_hat, std::vector y) { real_t sum = 0; real_t eps = 1e-8; for (uint32_t i = 0; i < y_hat.size(); i++) { sum += -(y[i] * std::log(y_hat[i] + eps) + (1 - y[i]) * std::log(1 - y_hat[i] + eps)); } return sum / y_hat.size(); } real_t MLPPCostOld::LogLoss(std::vector> y_hat, std::vector> y) { real_t sum = 0; real_t eps = 1e-8; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { sum += -(y[i][j] * std::log(y_hat[i][j] + eps) + (1 - y[i][j]) * std::log(1 - y_hat[i][j] + eps)); } } return sum / y_hat.size(); } std::vector MLPPCostOld::LogLossDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat)))); } std::vector> MLPPCostOld::LogLossDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat)))); } real_t MLPPCostOld::CrossEntropy(std::vector y_hat, std::vector y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { sum += y[i] * std::log(y_hat[i]); } return -1 * sum; } real_t MLPPCostOld::CrossEntropy(std::vector> y_hat, std::vector> y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { sum += y[i][j] * std::log(y_hat[i][j]); } } return -1 * sum; } std::vector MLPPCostOld::CrossEntropyDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)); } std::vector> MLPPCostOld::CrossEntropyDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)); } real_t MLPPCostOld::HuberLoss(std::vector y_hat, std::vector y, real_t delta) { MLPPLinAlg alg; real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { if (abs(y[i] - y_hat[i]) <= delta) { sum += (y[i] - y_hat[i]) * (y[i] - y_hat[i]); } else { sum += 2 * delta * abs(y[i] - y_hat[i]) - delta * delta; } } return sum; } real_t MLPPCostOld::HuberLoss(std::vector> y_hat, std::vector> y, real_t delta) { MLPPLinAlg alg; real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { if (abs(y[i][j] - y_hat[i][j]) <= delta) { sum += (y[i][j] - y_hat[i][j]) * (y[i][j] - y_hat[i][j]); } else { sum += 2 * delta * abs(y[i][j] - y_hat[i][j]) - delta * delta; } } } return sum; } std::vector MLPPCostOld::HuberLossDeriv(std::vector y_hat, std::vector y, real_t delta) { MLPPLinAlg alg; std::vector deriv; deriv.resize(y_hat.size()); for (uint32_t i = 0; i < y_hat.size(); i++) { if (abs(y[i] - y_hat[i]) <= delta) { deriv.push_back(-(y[i] - y_hat[i])); } else { if (y_hat[i] > 0 || y_hat[i] < 0) { deriv.push_back(2 * delta * (y_hat[i] / abs(y_hat[i]))); } else { deriv.push_back(0); } } } return deriv; } std::vector> MLPPCostOld::HuberLossDeriv(std::vector> y_hat, std::vector> y, real_t delta) { MLPPLinAlg alg; std::vector> deriv; deriv.resize(y_hat.size()); for (uint32_t i = 0; i < deriv.size(); i++) { deriv[i].resize(y_hat[i].size()); } for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { if (abs(y[i][j] - y_hat[i][j]) <= delta) { deriv[i].push_back(-(y[i][j] - y_hat[i][j])); } else { if (y_hat[i][j] > 0 || y_hat[i][j] < 0) { deriv[i].push_back(2 * delta * (y_hat[i][j] / abs(y_hat[i][j]))); } else { deriv[i].push_back(0); } } } } return deriv; } real_t MLPPCostOld::HingeLoss(std::vector y_hat, std::vector y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { sum += fmax(0, 1 - y[i] * y_hat[i]); } return sum / y_hat.size(); } real_t MLPPCostOld::HingeLoss(std::vector> y_hat, std::vector> y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { sum += fmax(0, 1 - y[i][j] * y_hat[i][j]); } } return sum / y_hat.size(); } std::vector MLPPCostOld::HingeLossDeriv(std::vector y_hat, std::vector y) { std::vector deriv; deriv.resize(y_hat.size()); for (uint32_t i = 0; i < y_hat.size(); i++) { if (1 - y[i] * y_hat[i] > 0) { deriv[i] = -y[i]; } else { deriv[i] = 0; } } return deriv; } std::vector> MLPPCostOld::HingeLossDeriv(std::vector> y_hat, std::vector> y) { std::vector> deriv; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { if (1 - y[i][j] * y_hat[i][j] > 0) { deriv[i][j] = -y[i][j]; } else { deriv[i][j] = 0; } } } return deriv; } real_t MLPPCostOld::WassersteinLoss(std::vector y_hat, std::vector y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { sum += y_hat[i] * y[i]; } return -sum / y_hat.size(); } real_t MLPPCostOld::WassersteinLoss(std::vector> y_hat, std::vector> y) { real_t sum = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { for (uint32_t j = 0; j < y_hat[i].size(); j++) { sum += y_hat[i][j] * y[i][j]; } } return -sum / y_hat.size(); } std::vector MLPPCostOld::WassersteinLossDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.scalarMultiply(-1, y); // Simple. } std::vector> MLPPCostOld::WassersteinLossDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.scalarMultiply(-1, y); // Simple. } real_t MLPPCostOld::HingeLoss(std::vector y_hat, std::vector y, std::vector weights, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge"); } real_t MLPPCostOld::HingeLoss(std::vector> y_hat, std::vector> y, std::vector> weights, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge"); } std::vector MLPPCostOld::HingeLossDeriv(std::vector y_hat, std::vector y, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y)); } std::vector> MLPPCostOld::HingeLossDeriv(std::vector> y_hat, std::vector> y, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y)); } real_t MLPPCostOld::dualFormSVM(std::vector alpha, std::vector> X, std::vector y) { MLPPLinAlg alg; std::vector> Y = alg.diag(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y. std::vector> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations. std::vector> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y); real_t alphaQ = alg.matmult(alg.matmult({ alpha }, Q), alg.transpose({ alpha }))[0][0]; std::vector one = alg.onevec(alpha.size()); return -alg.dot(one, alpha) + 0.5 * alphaQ; } std::vector MLPPCostOld::dualFormSVMDeriv(std::vector alpha, std::vector> X, std::vector y) { MLPPLinAlg alg; std::vector> Y = alg.zeromat(y.size(), y.size()); for (uint32_t i = 0; i < y.size(); i++) { Y[i][i] = y[i]; // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y. } std::vector> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations. std::vector> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y); std::vector alphaQDeriv = alg.mat_vec_mult(Q, alpha); std::vector one = alg.onevec(alpha.size()); return alg.subtraction(alphaQDeriv, one); } void MLPPCostOld::_bind_methods() { ClassDB::bind_method(D_METHOD("msev", "y_hat", "y"), &MLPPCostOld::msev); ClassDB::bind_method(D_METHOD("msem", "y_hat", "y"), &MLPPCostOld::msem); ClassDB::bind_method(D_METHOD("mse_derivv", "y_hat", "y"), &MLPPCostOld::mse_derivv); ClassDB::bind_method(D_METHOD("mse_derivm", "y_hat", "y"), &MLPPCostOld::mse_derivm); ClassDB::bind_method(D_METHOD("rmsev", "y_hat", "y"), &MLPPCostOld::rmsev); ClassDB::bind_method(D_METHOD("rmsem", "y_hat", "y"), &MLPPCostOld::rmsem); ClassDB::bind_method(D_METHOD("rmse_derivv", "y_hat", "y"), &MLPPCostOld::rmse_derivv); ClassDB::bind_method(D_METHOD("rmse_derivm", "y_hat", "y"), &MLPPCostOld::rmse_derivm); ClassDB::bind_method(D_METHOD("maev", "y_hat", "y"), &MLPPCostOld::maev); ClassDB::bind_method(D_METHOD("maem", "y_hat", "y"), &MLPPCostOld::maem); ClassDB::bind_method(D_METHOD("mae_derivv", "y_hat", "y"), &MLPPCostOld::mae_derivv); ClassDB::bind_method(D_METHOD("mae_derivm", "y_hat", "y"), &MLPPCostOld::mae_derivm); ClassDB::bind_method(D_METHOD("mbev", "y_hat", "y"), &MLPPCostOld::mbev); ClassDB::bind_method(D_METHOD("mbem", "y_hat", "y"), &MLPPCostOld::mbem); ClassDB::bind_method(D_METHOD("mbe_derivv", "y_hat", "y"), &MLPPCostOld::mbe_derivv); ClassDB::bind_method(D_METHOD("mbe_derivm", "y_hat", "y"), &MLPPCostOld::mbe_derivm); ClassDB::bind_method(D_METHOD("log_lossv", "y_hat", "y"), &MLPPCostOld::log_lossv); ClassDB::bind_method(D_METHOD("log_lossm", "y_hat", "y"), &MLPPCostOld::log_lossm); ClassDB::bind_method(D_METHOD("log_loss_derivv", "y_hat", "y"), &MLPPCostOld::log_loss_derivv); ClassDB::bind_method(D_METHOD("log_loss_derivm", "y_hat", "y"), &MLPPCostOld::log_loss_derivm); ClassDB::bind_method(D_METHOD("cross_entropyv", "y_hat", "y"), &MLPPCostOld::cross_entropyv); ClassDB::bind_method(D_METHOD("cross_entropym", "y_hat", "y"), &MLPPCostOld::cross_entropym); ClassDB::bind_method(D_METHOD("cross_entropy_derivv", "y_hat", "y"), &MLPPCostOld::cross_entropy_derivv); ClassDB::bind_method(D_METHOD("cross_entropy_derivm", "y_hat", "y"), &MLPPCostOld::cross_entropy_derivm); ClassDB::bind_method(D_METHOD("huber_lossv", "y_hat", "y"), &MLPPCostOld::huber_lossv); ClassDB::bind_method(D_METHOD("huber_lossm", "y_hat", "y"), &MLPPCostOld::huber_lossm); ClassDB::bind_method(D_METHOD("huber_loss_derivv", "y_hat", "y"), &MLPPCostOld::huber_loss_derivv); ClassDB::bind_method(D_METHOD("huber_loss_derivm", "y_hat", "y"), &MLPPCostOld::huber_loss_derivm); ClassDB::bind_method(D_METHOD("hinge_lossv", "y_hat", "y"), &MLPPCostOld::hinge_lossv); ClassDB::bind_method(D_METHOD("hinge_lossm", "y_hat", "y"), &MLPPCostOld::hinge_lossm); ClassDB::bind_method(D_METHOD("hinge_loss_derivv", "y_hat", "y"), &MLPPCostOld::hinge_loss_derivv); ClassDB::bind_method(D_METHOD("hinge_loss_derivm", "y_hat", "y"), &MLPPCostOld::hinge_loss_derivm); ClassDB::bind_method(D_METHOD("hinge_losswv", "y_hat", "y"), &MLPPCostOld::hinge_losswv); ClassDB::bind_method(D_METHOD("hinge_losswm", "y_hat", "y"), &MLPPCostOld::hinge_losswm); ClassDB::bind_method(D_METHOD("hinge_loss_derivwv", "y_hat", "y", "C"), &MLPPCostOld::hinge_loss_derivwv); ClassDB::bind_method(D_METHOD("hinge_loss_derivwm", "y_hat", "y", "C"), &MLPPCostOld::hinge_loss_derivwm); ClassDB::bind_method(D_METHOD("wasserstein_lossv", "y_hat", "y"), &MLPPCostOld::wasserstein_lossv); ClassDB::bind_method(D_METHOD("wasserstein_lossm", "y_hat", "y"), &MLPPCostOld::wasserstein_lossm); ClassDB::bind_method(D_METHOD("wasserstein_loss_derivv", "y_hat", "y"), &MLPPCostOld::wasserstein_loss_derivv); ClassDB::bind_method(D_METHOD("wasserstein_loss_derivm", "y_hat", "y"), &MLPPCostOld::wasserstein_loss_derivm); ClassDB::bind_method(D_METHOD("dual_form_svm", "alpha", "X", "y"), &MLPPCostOld::dual_form_svm); ClassDB::bind_method(D_METHOD("dual_form_svm_deriv", "alpha", "X", "y"), &MLPPCostOld::dual_form_svm_deriv); ClassDB::bind_method(D_METHOD("run_cost_norm_vector", "cost", "y_hat", "y"), &MLPPCostOld::run_cost_norm_vector); ClassDB::bind_method(D_METHOD("run_cost_norm_matrix", "cost", "y_hat", "y"), &MLPPCostOld::run_cost_norm_matrix); ClassDB::bind_method(D_METHOD("run_cost_deriv_vector", "cost", "y_hat", "y"), &MLPPCostOld::run_cost_deriv_vector); ClassDB::bind_method(D_METHOD("run_cost_deriv_matrix", "cost", "y_hat", "y"), &MLPPCostOld::run_cost_deriv_matrix); BIND_ENUM_CONSTANT(COST_TYPE_MSE); BIND_ENUM_CONSTANT(COST_TYPE_RMSE); BIND_ENUM_CONSTANT(COST_TYPE_MAE); BIND_ENUM_CONSTANT(COST_TYPE_MBE); BIND_ENUM_CONSTANT(COST_TYPE_LOGISTIC_LOSS); BIND_ENUM_CONSTANT(COST_TYPE_CROSS_ENTROPY); BIND_ENUM_CONSTANT(COST_TYPE_HINGE_LOSS); BIND_ENUM_CONSTANT(COST_TYPE_WASSERSTEIN_LOSS); }