// // Reg.cpp // // Created by Marc Melikyan on 1/16/21. // #include "utilities.h" #include "core/math/math_funcs.h" #include "core/log/logger.h" #include #include #include #include std::vector MLPPUtilities::weightInitialization(int n, std::string type) { std::random_device rd; std::default_random_engine generator(rd()); std::vector weights; for (int i = 0; i < n; i++) { if (type == "XavierNormal") { std::normal_distribution distribution(0, sqrt(2 / (n + 1))); weights.push_back(distribution(generator)); } else if (type == "XavierUniform") { std::uniform_real_distribution distribution(-sqrt(6 / (n + 1)), sqrt(6 / (n + 1))); weights.push_back(distribution(generator)); } else if (type == "HeNormal") { std::normal_distribution distribution(0, sqrt(2 / n)); weights.push_back(distribution(generator)); } else if (type == "HeUniform") { std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); weights.push_back(distribution(generator)); } else if (type == "LeCunNormal") { std::normal_distribution distribution(0, sqrt(1 / n)); weights.push_back(distribution(generator)); } else if (type == "LeCunUniform") { std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); weights.push_back(distribution(generator)); } else if (type == "Uniform") { std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); weights.push_back(distribution(generator)); } else { std::uniform_real_distribution distribution(0, 1); weights.push_back(distribution(generator)); } } return weights; } real_t MLPPUtilities::biasInitialization() { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(0, 1); return distribution(generator); } std::vector> MLPPUtilities::weightInitialization(int n, int m, std::string type) { std::random_device rd; std::default_random_engine generator(rd()); std::vector> weights; weights.resize(n); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (type == "XavierNormal") { std::normal_distribution distribution(0, sqrt(2 / (n + m))); weights[i].push_back(distribution(generator)); } else if (type == "XavierUniform") { std::uniform_real_distribution distribution(-sqrt(6 / (n + m)), sqrt(6 / (n + m))); weights[i].push_back(distribution(generator)); } else if (type == "HeNormal") { std::normal_distribution distribution(0, sqrt(2 / n)); weights[i].push_back(distribution(generator)); } else if (type == "HeUniform") { std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); weights[i].push_back(distribution(generator)); } else if (type == "LeCunNormal") { std::normal_distribution distribution(0, sqrt(1 / n)); weights[i].push_back(distribution(generator)); } else if (type == "LeCunUniform") { std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); weights[i].push_back(distribution(generator)); } else if (type == "Uniform") { std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); weights[i].push_back(distribution(generator)); } else { std::uniform_real_distribution distribution(0, 1); weights[i].push_back(distribution(generator)); } } } return weights; } std::vector MLPPUtilities::biasInitialization(int n) { std::vector bias; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(0, 1); for (int i = 0; i < n; i++) { bias.push_back(distribution(generator)); } return bias; } real_t MLPPUtilities::performance(std::vector y_hat, std::vector outputSet) { real_t correct = 0; for (int i = 0; i < y_hat.size(); i++) { if (std::round(y_hat[i]) == outputSet[i]) { correct++; } } return correct / y_hat.size(); } real_t MLPPUtilities::performance(std::vector> y_hat, std::vector> y) { real_t correct = 0; for (int i = 0; i < y_hat.size(); i++) { int sub_correct = 0; for (int j = 0; j < y_hat[i].size(); j++) { if (std::round(y_hat[i][j]) == y[i][j]) { sub_correct++; } if (sub_correct == y_hat[0].size()) { correct++; } } } return correct / y_hat.size(); } real_t MLPPUtilities::performance_vec(const Ref &y_hat, const Ref &output_set) { ERR_FAIL_COND_V(!y_hat.is_valid(), 0); ERR_FAIL_COND_V(!output_set.is_valid(), 0); real_t correct = 0; for (int i = 0; i < y_hat->size(); i++) { if (Math::is_equal_approx(y_hat->get_element(i), output_set->get_element(i))) { correct++; } } return correct / y_hat->size(); } real_t MLPPUtilities::performance_mat(const Ref &y_hat, const Ref &y) { ERR_FAIL_COND_V(!y_hat.is_valid(), 0); ERR_FAIL_COND_V(!y.is_valid(), 0); real_t correct = 0; for (int i = 0; i < y_hat->size().y; i++) { int sub_correct = 0; for (int j = 0; j < y_hat->size().x; j++) { if (Math::round(y_hat->get_element(i, j)) == y->get_element(i, j)) { sub_correct++; } if (sub_correct == y_hat->size().x) { correct++; } } } return correct / y_hat->size().y; } real_t MLPPUtilities::performance_pool_int_array_vec(PoolIntArray y_hat, const Ref &output_set) { ERR_FAIL_COND_V(!output_set.is_valid(), 0); real_t correct = 0; for (int i = 0; i < y_hat.size(); i++) { if (y_hat[i] == Math::round(output_set->get_element(i))) { correct++; } } return correct / y_hat.size(); } void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, real_t bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; if (layer > -1) { layer_info = " for layer " + std::to_string(layer); } if (app) { saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if (!saveFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for (int i = 0; i < weights.size(); i++) { saveFile << weights[i] << std::endl; } saveFile << "Bias" << layer_info << std::endl; saveFile << bias << std::endl; saveFile.close(); } void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, std::vector initial, real_t bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; if (layer > -1) { layer_info = " for layer " + std::to_string(layer); } if (app) { saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if (!saveFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for (int i = 0; i < weights.size(); i++) { saveFile << weights[i] << std::endl; } saveFile << "Initial(s)" << layer_info << std::endl; for (int i = 0; i < initial.size(); i++) { saveFile << initial[i] << std::endl; } saveFile << "Bias" << layer_info << std::endl; saveFile << bias << std::endl; saveFile.close(); } void MLPPUtilities::saveParameters(std::string fileName, std::vector> weights, std::vector bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; if (layer > -1) { layer_info = " for layer " + std::to_string(layer); } if (app) { saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if (!saveFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { saveFile << weights[i][j] << std::endl; } } saveFile << "Bias(es)" << layer_info << std::endl; for (int i = 0; i < bias.size(); i++) { saveFile << bias[i] << std::endl; } saveFile.close(); } void MLPPUtilities::UI(std::vector weights, real_t bias) { std::cout << "Values of the weight(s):" << std::endl; for (int i = 0; i < weights.size(); i++) { std::cout << weights[i] << std::endl; } std::cout << "Value of the bias:" << std::endl; std::cout << bias << std::endl; } void MLPPUtilities::UI(std::vector> weights, std::vector bias) { std::cout << "Values of the weight(s):" << std::endl; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { std::cout << weights[i][j] << std::endl; } } std::cout << "Value of the biases:" << std::endl; for (int i = 0; i < bias.size(); i++) { std::cout << bias[i] << std::endl; } } void MLPPUtilities::UI(std::vector weights, std::vector initial, real_t bias) { std::cout << "Values of the weight(s):" << std::endl; for (int i = 0; i < weights.size(); i++) { std::cout << weights[i] << std::endl; } std::cout << "Values of the initial(s):" << std::endl; for (int i = 0; i < initial.size(); i++) { std::cout << initial[i] << std::endl; } std::cout << "Value of the bias:" << std::endl; std::cout << bias << std::endl; } void MLPPUtilities::CostInfo(int epoch, real_t cost_prev, real_t Cost) { std::cout << "-----------------------------------" << std::endl; std::cout << "This is epoch: " << epoch << std::endl; std::cout << "The cost function has been minimized by " << cost_prev - Cost << std::endl; std::cout << "Current Cost:" << std::endl; std::cout << Cost << std::endl; } void MLPPUtilities::cost_info(int epoch, real_t cost_prev, real_t cost) { String str = "This is epoch: " + itos(epoch) + ","; str += "The cost function has been minimized by " + String::num(cost_prev - cost); str += ", Current Cost:" + String::num(cost); PLOG_MSG(str); } std::vector>> MLPPUtilities::createMiniBatches(std::vector> inputSet, int n_mini_batch) { int n = inputSet.size(); std::vector>> inputMiniBatches; // Creating the mini-batches for (int i = 0; i < n_mini_batch; i++) { std::vector> currentInputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); } if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); } } return inputMiniBatches; } std::tuple>>, std::vector>> MLPPUtilities::createMiniBatches(std::vector> inputSet, std::vector outputSet, int n_mini_batch) { int n = inputSet.size(); std::vector>> inputMiniBatches; std::vector> outputMiniBatches; for (int i = 0; i < n_mini_batch; i++) { std::vector> currentInputSet; std::vector currentOutputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); outputMiniBatches.push_back(currentOutputSet); } if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]); } } return { inputMiniBatches, outputMiniBatches }; } std::tuple>>, std::vector>>> MLPPUtilities::createMiniBatches(std::vector> inputSet, std::vector> outputSet, int n_mini_batch) { int n = inputSet.size(); std::vector>> inputMiniBatches; std::vector>> outputMiniBatches; for (int i = 0; i < n_mini_batch; i++) { std::vector> currentInputSet; std::vector> currentOutputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); outputMiniBatches.push_back(currentOutputSet); } if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]); } } return { inputMiniBatches, outputMiniBatches }; } std::tuple MLPPUtilities::TF_PN(std::vector y_hat, std::vector y) { real_t TP, FP, TN, FN = 0; for (int i = 0; i < y_hat.size(); i++) { if (y_hat[i] == y[i]) { if (y_hat[i] == 1) { TP++; } else { TN++; } } else { if (y_hat[i] == 1) { FP++; } else { FN++; } } } return { TP, FP, TN, FN }; } real_t MLPPUtilities::recall(std::vector y_hat, std::vector y) { auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return TP / (TP + FN); } real_t MLPPUtilities::precision(std::vector y_hat, std::vector y) { auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return TP / (TP + FP); } real_t MLPPUtilities::accuracy(std::vector y_hat, std::vector y) { auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return (TP + TN) / (TP + FP + FN + TN); } real_t MLPPUtilities::f1_score(std::vector y_hat, std::vector y) { return 2 * precision(y_hat, y) * recall(y_hat, y) / (precision(y_hat, y) + recall(y_hat, y)); }