// // HiddenLayer.cpp // // Created by Marc Melikyan on 11/4/20. // #include "hidden_layer.h" #include "../activation/activation.h" #include "../lin_alg/lin_alg.h" #include "../utilities/utilities.h" #include #include /* void MLPPHiddenLayer::forward_pass() { MLPPLinAlg alg; MLPPActivation avn; z = alg.mat_vec_add(alg.matmult(input, weights), bias); a = (avn.*activation_map[activation])(z, false); } void MLPPHiddenLayer::test(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias); a_test = (avn.*activationTest_map[activation])(z_test, 0); } MLPPHiddenLayer::MLPPHiddenLayer(int n_hidden, std::string activation, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) : n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) { weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit); bias = MLPPUtilities::biasInitialization(n_hidden); activation_map["Linear"] = &MLPPActivation::linear; activationTest_map["Linear"] = &MLPPActivation::linear; activation_map["Sigmoid"] = &MLPPActivation::sigmoid; activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid; activation_map["Swish"] = &MLPPActivation::swish; activationTest_map["Swish"] = &MLPPActivation::swish; activation_map["Mish"] = &MLPPActivation::mish; activationTest_map["Mish"] = &MLPPActivation::mish; activation_map["SinC"] = &MLPPActivation::sinc; activationTest_map["SinC"] = &MLPPActivation::sinc; activation_map["Softplus"] = &MLPPActivation::softplus; activationTest_map["Softplus"] = &MLPPActivation::softplus; activation_map["Softsign"] = &MLPPActivation::softsign; activationTest_map["Softsign"] = &MLPPActivation::softsign; activation_map["CLogLog"] = &MLPPActivation::cloglog; activationTest_map["CLogLog"] = &MLPPActivation::cloglog; activation_map["Logit"] = &MLPPActivation::logit; activationTest_map["Logit"] = &MLPPActivation::logit; activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF; activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF; activation_map["RELU"] = &MLPPActivation::RELU; activationTest_map["RELU"] = &MLPPActivation::RELU; activation_map["GELU"] = &MLPPActivation::GELU; activationTest_map["GELU"] = &MLPPActivation::GELU; activation_map["Sign"] = &MLPPActivation::sign; activationTest_map["Sign"] = &MLPPActivation::sign; activation_map["UnitStep"] = &MLPPActivation::unitStep; activationTest_map["UnitStep"] = &MLPPActivation::unitStep; activation_map["Sinh"] = &MLPPActivation::sinh; activationTest_map["Sinh"] = &MLPPActivation::sinh; activation_map["Cosh"] = &MLPPActivation::cosh; activationTest_map["Cosh"] = &MLPPActivation::cosh; activation_map["Tanh"] = &MLPPActivation::tanh; activationTest_map["Tanh"] = &MLPPActivation::tanh; activation_map["Csch"] = &MLPPActivation::csch; activationTest_map["Csch"] = &MLPPActivation::csch; activation_map["Sech"] = &MLPPActivation::sech; activationTest_map["Sech"] = &MLPPActivation::sech; activation_map["Coth"] = &MLPPActivation::coth; activationTest_map["Coth"] = &MLPPActivation::coth; activation_map["Arsinh"] = &MLPPActivation::arsinh; activationTest_map["Arsinh"] = &MLPPActivation::arsinh; activation_map["Arcosh"] = &MLPPActivation::arcosh; activationTest_map["Arcosh"] = &MLPPActivation::arcosh; activation_map["Artanh"] = &MLPPActivation::artanh; activationTest_map["Artanh"] = &MLPPActivation::artanh; activation_map["Arcsch"] = &MLPPActivation::arcsch; activationTest_map["Arcsch"] = &MLPPActivation::arcsch; activation_map["Arsech"] = &MLPPActivation::arsech; activationTest_map["Arsech"] = &MLPPActivation::arsech; activation_map["Arcoth"] = &MLPPActivation::arcoth; activationTest_map["Arcoth"] = &MLPPActivation::arcoth; } */ MLPPOldHiddenLayer::MLPPOldHiddenLayer(int n_hidden, std::string activation, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) : n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) { weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit); bias = MLPPUtilities::biasInitialization(n_hidden); activation_map["Linear"] = &MLPPActivation::linear; activationTest_map["Linear"] = &MLPPActivation::linear; activation_map["Sigmoid"] = &MLPPActivation::sigmoid; activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid; activation_map["Swish"] = &MLPPActivation::swish; activationTest_map["Swish"] = &MLPPActivation::swish; activation_map["Mish"] = &MLPPActivation::mish; activationTest_map["Mish"] = &MLPPActivation::mish; activation_map["SinC"] = &MLPPActivation::sinc; activationTest_map["SinC"] = &MLPPActivation::sinc; activation_map["Softplus"] = &MLPPActivation::softplus; activationTest_map["Softplus"] = &MLPPActivation::softplus; activation_map["Softsign"] = &MLPPActivation::softsign; activationTest_map["Softsign"] = &MLPPActivation::softsign; activation_map["CLogLog"] = &MLPPActivation::cloglog; activationTest_map["CLogLog"] = &MLPPActivation::cloglog; activation_map["Logit"] = &MLPPActivation::logit; activationTest_map["Logit"] = &MLPPActivation::logit; activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF; activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF; activation_map["RELU"] = &MLPPActivation::RELU; activationTest_map["RELU"] = &MLPPActivation::RELU; activation_map["GELU"] = &MLPPActivation::GELU; activationTest_map["GELU"] = &MLPPActivation::GELU; activation_map["Sign"] = &MLPPActivation::sign; activationTest_map["Sign"] = &MLPPActivation::sign; activation_map["UnitStep"] = &MLPPActivation::unitStep; activationTest_map["UnitStep"] = &MLPPActivation::unitStep; activation_map["Sinh"] = &MLPPActivation::sinh; activationTest_map["Sinh"] = &MLPPActivation::sinh; activation_map["Cosh"] = &MLPPActivation::cosh; activationTest_map["Cosh"] = &MLPPActivation::cosh; activation_map["Tanh"] = &MLPPActivation::tanh; activationTest_map["Tanh"] = &MLPPActivation::tanh; activation_map["Csch"] = &MLPPActivation::csch; activationTest_map["Csch"] = &MLPPActivation::csch; activation_map["Sech"] = &MLPPActivation::sech; activationTest_map["Sech"] = &MLPPActivation::sech; activation_map["Coth"] = &MLPPActivation::coth; activationTest_map["Coth"] = &MLPPActivation::coth; activation_map["Arsinh"] = &MLPPActivation::arsinh; activationTest_map["Arsinh"] = &MLPPActivation::arsinh; activation_map["Arcosh"] = &MLPPActivation::arcosh; activationTest_map["Arcosh"] = &MLPPActivation::arcosh; activation_map["Artanh"] = &MLPPActivation::artanh; activationTest_map["Artanh"] = &MLPPActivation::artanh; activation_map["Arcsch"] = &MLPPActivation::arcsch; activationTest_map["Arcsch"] = &MLPPActivation::arcsch; activation_map["Arsech"] = &MLPPActivation::arsech; activationTest_map["Arsech"] = &MLPPActivation::arsech; activation_map["Arcoth"] = &MLPPActivation::arcoth; activationTest_map["Arcoth"] = &MLPPActivation::arcoth; } void MLPPOldHiddenLayer::forwardPass() { MLPPLinAlg alg; MLPPActivation avn; z = alg.mat_vec_add(alg.matmult(input, weights), bias); a = (avn.*activation_map[activation])(z, 0); } void MLPPOldHiddenLayer::Test(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias); a_test = (avn.*activationTest_map[activation])(z_test, 0); }