#ifndef MLPP_WGAN_H #define MLPP_WGAN_H // // WGAN.hpp // // Created by Marc Melikyan on 11/4/20. // #include "core/containers/vector.h" #include "core/math/math_defs.h" #include "core/string/ustring.h" #include "core/object/reference.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include #include class MLPPWGAN : public Reference { GDCLASS(MLPPWGAN, Reference); public: Ref get_output_set(); void set_output_set(const Ref &val); int get_k() const; void set_k(const int val); Ref generate_example(int n); void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); real_t score(); void save(const String &file_name); void add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); void add_output_layer(MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); MLPPWGAN(real_t k, const Ref &output_set); MLPPWGAN(); ~MLPPWGAN(); protected: Ref model_set_test_generator(const Ref &X); // Evaluator for the generator of the WGAN. Ref model_set_test_discriminator(const Ref &X); // Evaluator for the discriminator of the WGAN. real_t cost(const Ref &y_hat, const Ref &y); void forward_pass(); void update_discriminator_parameters(Vector> hidden_layer_updations, const Ref &output_layer_updation, real_t learning_rate); void update_generator_parameters(Vector> hidden_layer_updations, real_t learning_rate); struct DiscriminatorGradientResult { Vector> cumulative_hidden_layer_w_grad; // Tensor containing ALL hidden grads. Ref output_w_grad; }; DiscriminatorGradientResult compute_discriminator_gradients(const Ref &y_hat, const Ref &output_set); Vector> compute_generator_gradients(const Ref &y_hat, const Ref &output_set); void handle_ui(int epoch, real_t cost_prev, const Ref &y_hat, const Ref &output_set); static void _bind_methods(); Ref output_set; Ref y_hat; Vector> network; Ref output_layer; int n; int k; }; class MLPPWGANOld { public: MLPPWGANOld(real_t k, std::vector> outputSet); ~MLPPWGANOld(); std::vector> generateExample(int n); void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false); real_t score(); void save(std::string fileName); void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); private: std::vector> modelSetTestGenerator(std::vector> X); // Evaluator for the generator of the WGAN. std::vector modelSetTestDiscriminator(std::vector> X); // Evaluator for the discriminator of the WGAN. real_t Cost(std::vector y_hat, std::vector y); void forwardPass(); void updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate); void updateGeneratorParameters(std::vector>> hiddenLayerUpdations, real_t learning_rate); std::tuple>>, std::vector> computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet); std::vector>> computeGeneratorGradients(std::vector y_hat, std::vector outputSet); void UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet); std::vector> outputSet; std::vector y_hat; std::vector network; MLPPOldOutputLayer *outputLayer; int n; int k; }; #endif /* WGAN_hpp */