// // Reg.cpp // // Created by Marc Melikyan on 1/16/21. // #include #include #include #include #include "Utilities.hpp" namespace MLPP{ std::vector Utilities::weightInitialization(int n, std::string type){ std::random_device rd; std::default_random_engine generator(rd()); std::vector weights; for(int i = 0; i < n; i++){ if(type == "XavierNormal"){ std::normal_distribution distribution(0, sqrt(2 / (n + 1))); weights.push_back(distribution(generator)); } else if(type == "XavierUniform"){ std::uniform_real_distribution distribution(-sqrt(6 / (n + 1)), sqrt(6 / (n + 1))); weights.push_back(distribution(generator)); } else if(type == "HeNormal"){ std::normal_distribution distribution(0, sqrt(2 / n)); weights.push_back(distribution(generator)); } else if(type == "HeUniform"){ std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); weights.push_back(distribution(generator)); } else if(type == "LeCunNormal"){ std::normal_distribution distribution(0, sqrt(1 / n)); weights.push_back(distribution(generator)); } else if(type == "LeCunUniform"){ std::uniform_real_distribution distribution(-sqrt(3/n), sqrt(3/n)); weights.push_back(distribution(generator)); } else if(type == "Uniform"){ std::uniform_real_distribution distribution(-1/sqrt(n), 1/sqrt(n)); weights.push_back(distribution(generator)); } else{ std::uniform_real_distribution distribution(0, 1); weights.push_back(distribution(generator)); } } return weights; } double Utilities::biasInitialization(){ std::random_device rd; std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(0,1); return distribution(generator); } std::vector> Utilities::weightInitialization(int n, int m, std::string type){ std::random_device rd; std::default_random_engine generator(rd()); std::vector> weights; weights.resize(n); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ if(type == "XavierNormal"){ std::normal_distribution distribution(0, sqrt(2 / (n + m))); weights[i].push_back(distribution(generator)); } else if(type == "XavierUniform"){ std::uniform_real_distribution distribution(-sqrt(6 / (n + m)), sqrt(6 / (n + m))); weights[i].push_back(distribution(generator)); } else if(type == "HeNormal"){ std::normal_distribution distribution(0, sqrt(2 / n)); weights[i].push_back(distribution(generator)); } else if(type == "HeUniform"){ std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); weights[i].push_back(distribution(generator)); } else if(type == "LeCunNormal"){ std::normal_distribution distribution(0, sqrt(1 / n)); weights[i].push_back(distribution(generator)); } else if(type == "LeCunUniform"){ std::uniform_real_distribution distribution(-sqrt(3/n), sqrt(3/n)); weights[i].push_back(distribution(generator)); } else if(type == "Uniform"){ std::uniform_real_distribution distribution(-1/sqrt(n), 1/sqrt(n)); weights[i].push_back(distribution(generator)); } else{ std::uniform_real_distribution distribution(0, 1); weights[i].push_back(distribution(generator)); } } } return weights; } std::vector Utilities::biasInitialization(int n){ std::vector bias; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(0,1); for(int i = 0; i < n; i++){ bias.push_back(distribution(generator)); } return bias; } double Utilities::performance(std::vector y_hat, std::vector outputSet){ double correct = 0; for(int i = 0; i < y_hat.size(); i++){ if(std::round(y_hat[i]) == outputSet[i]){ correct++; } } return correct/y_hat.size(); } double Utilities::performance(std::vector> y_hat, std::vector> y){ double correct = 0; for(int i = 0; i < y_hat.size(); i++){ int sub_correct = 0; for(int j = 0; j < y_hat[i].size(); j++){ if(std::round(y_hat[i][j]) == y[i][j]){ sub_correct++; } if(sub_correct == y_hat[0].size()){ correct++; } } } return correct/y_hat.size(); } void Utilities::saveParameters(std::string fileName, std::vector weights, double bias, bool app, int layer){ std::string layer_info = ""; std::ofstream saveFile; if(layer > -1){ layer_info = " for layer " + std::to_string(layer); } if(app){ saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if(!saveFile.is_open()){ std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for(int i = 0; i < weights.size(); i++){ saveFile << weights[i] << std::endl; } saveFile << "Bias" << layer_info << std::endl; saveFile << bias << std::endl; saveFile.close(); } void Utilities::saveParameters(std::string fileName, std::vector weights, std::vector initial, double bias, bool app, int layer){ std::string layer_info = ""; std::ofstream saveFile; if(layer > -1){ layer_info = " for layer " + std::to_string(layer); } if(app){ saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if(!saveFile.is_open()){ std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for(int i = 0; i < weights.size(); i++){ saveFile << weights[i] << std::endl; } saveFile << "Initial(s)" << layer_info << std::endl; for(int i = 0; i < initial.size(); i++){ saveFile << initial[i] << std::endl; } saveFile << "Bias" << layer_info << std::endl; saveFile << bias << std::endl; saveFile.close(); } void Utilities::saveParameters(std::string fileName, std::vector> weights, std::vector bias, bool app, int layer){ std::string layer_info = ""; std::ofstream saveFile; if(layer > -1){ layer_info = " for layer " + std::to_string(layer); } if(app){ saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if(!saveFile.is_open()){ std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for(int i = 0; i < weights.size(); i++){ for(int j = 0; j < weights[i].size(); j++){ saveFile << weights[i][j] << std::endl; } } saveFile << "Bias(es)" << layer_info << std::endl; for(int i = 0; i < bias.size(); i++){ saveFile << bias[i] << std::endl; } saveFile.close(); } void Utilities::UI(std::vector weights, double bias){ std::cout << "Values of the weight(s):" << std::endl; for(int i = 0; i < weights.size(); i++){ std::cout << weights[i] << std::endl; } std:: cout << "Value of the bias:" << std::endl; std::cout << bias << std::endl; } void Utilities::UI(std::vector> weights, std::vector bias){ std::cout << "Values of the weight(s):" << std::endl; for(int i = 0; i < weights.size(); i++){ for(int j = 0; j < weights[i].size(); j++){ std::cout << weights[i][j] << std::endl; } } std::cout << "Value of the biases:" << std::endl; for(int i = 0; i < bias.size(); i++){ std::cout << bias[i] << std::endl; } } void Utilities::UI(std::vector weights, std::vector initial, double bias){ std::cout << "Values of the weight(s):" << std::endl; for(int i = 0; i < weights.size(); i++){ std::cout << weights[i] << std::endl; } std::cout << "Values of the initial(s):" << std::endl; for(int i = 0; i < initial.size(); i++){ std::cout << initial[i] << std::endl; } std:: cout << "Value of the bias:" << std::endl; std::cout << bias << std::endl; } void Utilities::CostInfo(int epoch, double cost_prev, double Cost){ std::cout << "-----------------------------------" << std::endl; std::cout << "This is epoch: " << epoch << std::endl; std::cout << "The cost function has been minimized by " << cost_prev - Cost << std::endl; std::cout << "Current Cost:" << std::endl; std::cout << Cost << std::endl; } std::vector>> Utilities::createMiniBatches(std::vector> inputSet, int n_mini_batch){ int n = inputSet.size(); std::vector>> inputMiniBatches; // Creating the mini-batches for(int i = 0; i < n_mini_batch; i++){ std::vector> currentInputSet; for(int j = 0; j < n/n_mini_batch; j++){ currentInputSet.push_back(inputSet[n/n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); } if(double(n)/double(n_mini_batch) - int(n/n_mini_batch) != 0){ for(int i = 0; i < n - n/n_mini_batch * n_mini_batch; i++){ inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n/n_mini_batch * n_mini_batch + i]); } } return inputMiniBatches; } std::tuple>>, std::vector>> Utilities::createMiniBatches(std::vector> inputSet, std::vector outputSet, int n_mini_batch){ int n = inputSet.size(); std::vector>> inputMiniBatches; std::vector> outputMiniBatches; for(int i = 0; i < n_mini_batch; i++){ std::vector> currentInputSet; std::vector currentOutputSet; for(int j = 0; j < n/n_mini_batch; j++){ currentInputSet.push_back(inputSet[n/n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n/n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); outputMiniBatches.push_back(currentOutputSet); } if(double(n)/double(n_mini_batch) - int(n/n_mini_batch) != 0){ for(int i = 0; i < n - n/n_mini_batch * n_mini_batch; i++){ inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n/n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n/n_mini_batch * n_mini_batch + i]); } } return {inputMiniBatches, outputMiniBatches}; } std::tuple>>, std::vector>>> Utilities::createMiniBatches(std::vector> inputSet, std::vector> outputSet, int n_mini_batch){ int n = inputSet.size(); std::vector>> inputMiniBatches; std::vector>> outputMiniBatches; for(int i = 0; i < n_mini_batch; i++){ std::vector> currentInputSet; std::vector> currentOutputSet; for(int j = 0; j < n/n_mini_batch; j++){ currentInputSet.push_back(inputSet[n/n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n/n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); outputMiniBatches.push_back(currentOutputSet); } if(double(n)/double(n_mini_batch) - int(n/n_mini_batch) != 0){ for(int i = 0; i < n - n/n_mini_batch * n_mini_batch; i++){ inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n/n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n/n_mini_batch * n_mini_batch + i]); } } return {inputMiniBatches, outputMiniBatches}; } std::tuple Utilities::TF_PN(std::vector y_hat, std::vector y){ double TP, FP, TN, FN = 0; for(int i = 0; i < y_hat.size(); i++){ if(y_hat[i] == y[i]){ if(y_hat[i] == 1){ TP++; } else{ TN++; } } else{ if(y_hat[i] == 1){ FP++; } else{ FN++; } } } return {TP, FP, TN, FN}; } double Utilities::recall(std::vector y_hat, std::vector y){ auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return TP / (TP + FN); } double Utilities::precision(std::vector y_hat, std::vector y){ auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return TP / (TP + FP); } double Utilities::accuracy(std::vector y_hat, std::vector y){ auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return (TP + TN) / (TP + FP + FN + TN); } double Utilities::f1_score(std::vector y_hat, std::vector y){ return 2 * precision(y_hat, y) * recall(y_hat, y) / (precision(y_hat, y) + recall(y_hat, y)); } }