/*************************************************************************/ /* utilities.cpp */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "utilities.h" #include "core/log/logger.h" #include "core/math/math_funcs.h" #include "core/math/random_pcg.h" #include #include #include #include std::vector MLPPUtilities::weightInitialization(int n, std::string type) { std::random_device rd; std::default_random_engine generator(rd()); std::vector weights; for (int i = 0; i < n; i++) { if (type == "XavierNormal") { std::normal_distribution distribution(0, sqrt(2 / (n + 1))); weights.push_back(distribution(generator)); } else if (type == "XavierUniform") { std::uniform_real_distribution distribution(-sqrt(6 / (n + 1)), sqrt(6 / (n + 1))); weights.push_back(distribution(generator)); } else if (type == "HeNormal") { std::normal_distribution distribution(0, sqrt(2 / n)); weights.push_back(distribution(generator)); } else if (type == "HeUniform") { std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); weights.push_back(distribution(generator)); } else if (type == "LeCunNormal") { std::normal_distribution distribution(0, sqrt(1 / n)); weights.push_back(distribution(generator)); } else if (type == "LeCunUniform") { std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); weights.push_back(distribution(generator)); } else if (type == "Uniform") { std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); weights.push_back(distribution(generator)); } else { std::uniform_real_distribution distribution(0, 1); weights.push_back(distribution(generator)); } } return weights; } real_t MLPPUtilities::biasInitialization() { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(0, 1); return distribution(generator); } std::vector> MLPPUtilities::weightInitialization(int n, int m, std::string type) { std::random_device rd; std::default_random_engine generator(rd()); std::vector> weights; weights.resize(n); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (type == "XavierNormal") { std::normal_distribution distribution(0, sqrt(2 / (n + m))); weights[i].push_back(distribution(generator)); } else if (type == "XavierUniform") { std::uniform_real_distribution distribution(-sqrt(6 / (n + m)), sqrt(6 / (n + m))); weights[i].push_back(distribution(generator)); } else if (type == "HeNormal") { std::normal_distribution distribution(0, sqrt(2 / n)); weights[i].push_back(distribution(generator)); } else if (type == "HeUniform") { std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); weights[i].push_back(distribution(generator)); } else if (type == "LeCunNormal") { std::normal_distribution distribution(0, sqrt(1 / n)); weights[i].push_back(distribution(generator)); } else if (type == "LeCunUniform") { std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); weights[i].push_back(distribution(generator)); } else if (type == "Uniform") { std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); weights[i].push_back(distribution(generator)); } else { std::uniform_real_distribution distribution(0, 1); weights[i].push_back(distribution(generator)); } } } return weights; } std::vector MLPPUtilities::biasInitialization(int n) { std::vector bias; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(0, 1); for (int i = 0; i < n; i++) { bias.push_back(distribution(generator)); } return bias; } void MLPPUtilities::weight_initializationv(Ref weights, WeightDistributionType type) { ERR_FAIL_COND(!weights.is_valid()); int n = weights->size(); real_t *weights_ptr = weights->ptrw(); RandomPCG rnd; rnd.randomize(); std::random_device rd; std::default_random_engine generator(rd()); switch (type) { case WEIGHT_DISTRIBUTION_TYPE_DEFAULT: { std::uniform_real_distribution distribution(0, 1); for (int i = 0; i < n; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL: { std::normal_distribution distribution(0, Math::sqrt(2.0 / (n + 1.0))); for (int i = 0; i < n; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_XAVIER_UNIFORM: { std::uniform_real_distribution distribution(-Math::sqrt(6.0 / (n + 1.0)), Math::sqrt(6.0 / (n + 1.0))); for (int i = 0; i < n; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_HE_NORMAL: { std::normal_distribution distribution(0, Math::sqrt(2.0 / n)); for (int i = 0; i < n; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_HE_UNIFORM: { std::uniform_real_distribution distribution(-Math::sqrt(6.0 / n), Math::sqrt(6.0 / n)); for (int i = 0; i < n; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_LE_CUN_NORMAL: { std::normal_distribution distribution(0, Math::sqrt(1.0 / n)); for (int i = 0; i < n; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_LE_CUN_UNIFORM: { std::uniform_real_distribution distribution(-Math::sqrt(3.0 / n), Math::sqrt(3.0 / n)); for (int i = 0; i < n; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_UNIFORM: { std::uniform_real_distribution distribution(-1.0 / Math::sqrt(static_cast(n)), 1.0 / Math::sqrt(static_cast(n))); for (int i = 0; i < n; ++i) { weights_ptr[i] = distribution(generator); } } break; default: break; } } void MLPPUtilities::weight_initializationm(Ref weights, WeightDistributionType type) { ERR_FAIL_COND(!weights.is_valid()); int n = weights->size().x; int m = weights->size().y; int data_size = weights->data_size(); real_t *weights_ptr = weights->ptrw(); RandomPCG rnd; rnd.randomize(); std::random_device rd; std::default_random_engine generator(rd()); switch (type) { case WEIGHT_DISTRIBUTION_TYPE_DEFAULT: { std::uniform_real_distribution distribution(0, 1); for (int i = 0; i < data_size; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL: { std::normal_distribution distribution(0, sqrt(2 / (n + m))); for (int i = 0; i < data_size; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_XAVIER_UNIFORM: { std::uniform_real_distribution distribution(-sqrt(6 / (n + m)), sqrt(6 / (n + m))); for (int i = 0; i < data_size; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_HE_NORMAL: { std::normal_distribution distribution(0, sqrt(2 / n)); for (int i = 0; i < data_size; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_HE_UNIFORM: { std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); for (int i = 0; i < data_size; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_LE_CUN_NORMAL: { std::normal_distribution distribution(0, sqrt(1 / n)); for (int i = 0; i < data_size; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_LE_CUN_UNIFORM: { std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); for (int i = 0; i < data_size; ++i) { weights_ptr[i] = distribution(generator); } } break; case WEIGHT_DISTRIBUTION_TYPE_UNIFORM: { std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); for (int i = 0; i < data_size; ++i) { weights_ptr[i] = distribution(generator); } } break; default: break; } } real_t MLPPUtilities::bias_initializationr() { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(0, 1); return distribution(generator); } void MLPPUtilities::bias_initializationv(Ref z) { ERR_FAIL_COND(!z.is_valid()); std::vector bias; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_real_distribution distribution(0, 1); int n = z->size(); for (int i = 0; i < n; i++) { bias.push_back(distribution(generator)); } } real_t MLPPUtilities::performance(std::vector y_hat, std::vector outputSet) { real_t correct = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { if (std::round(y_hat[i]) == outputSet[i]) { correct++; } } return correct / y_hat.size(); } real_t MLPPUtilities::performance(std::vector> y_hat, std::vector> y) { real_t correct = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { uint32_t sub_correct = 0; for (uint32_t j = 0; j < y_hat[i].size(); j++) { if (std::round(y_hat[i][j]) == y[i][j]) { sub_correct++; } if (sub_correct == y_hat[0].size()) { correct++; } } } return correct / y_hat.size(); } real_t MLPPUtilities::performance_vec(const Ref &y_hat, const Ref &output_set) { ERR_FAIL_COND_V(!y_hat.is_valid(), 0); ERR_FAIL_COND_V(!output_set.is_valid(), 0); int correct = 0; for (int i = 0; i < y_hat->size(); i++) { if (Math::is_equal_approx(Math::round(y_hat->element_get(i)), output_set->element_get(i))) { correct++; } } return correct / (real_t)y_hat->size(); } real_t MLPPUtilities::performance_mat(const Ref &y_hat, const Ref &y) { ERR_FAIL_COND_V(!y_hat.is_valid(), 0); ERR_FAIL_COND_V(!y.is_valid(), 0); real_t correct = 0; for (int i = 0; i < y_hat->size().y; i++) { int sub_correct = 0; for (int j = 0; j < y_hat->size().x; j++) { if (Math::is_equal_approx(Math::round(y_hat->element_get(i, j)), y->element_get(i, j))) { sub_correct++; } if (sub_correct == y_hat->size().x) { correct++; } } } return correct / (real_t)y_hat->size().y; } real_t MLPPUtilities::performance_pool_int_array_vec(PoolIntArray y_hat, const Ref &output_set) { ERR_FAIL_COND_V(!output_set.is_valid(), 0); real_t correct = 0; for (int i = 0; i < y_hat.size(); i++) { if (y_hat[i] == Math::round(output_set->element_get(i))) { correct++; } } return correct / (real_t)y_hat.size(); } void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, real_t bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; if (layer > -1) { layer_info = " for layer " + std::to_string(layer); } if (app) { saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if (!saveFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for (uint32_t i = 0; i < weights.size(); i++) { saveFile << weights[i] << std::endl; } saveFile << "Bias" << layer_info << std::endl; saveFile << bias << std::endl; saveFile.close(); } void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, std::vector initial, real_t bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; if (layer > -1) { layer_info = " for layer " + std::to_string(layer); } if (app) { saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if (!saveFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for (uint32_t i = 0; i < weights.size(); i++) { saveFile << weights[i] << std::endl; } saveFile << "Initial(s)" << layer_info << std::endl; for (uint32_t i = 0; i < initial.size(); i++) { saveFile << initial[i] << std::endl; } saveFile << "Bias" << layer_info << std::endl; saveFile << bias << std::endl; saveFile.close(); } void MLPPUtilities::saveParameters(std::string fileName, std::vector> weights, std::vector bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; if (layer > -1) { layer_info = " for layer " + std::to_string(layer); } if (app) { saveFile.open(fileName.c_str(), std::ios_base::app); } else { saveFile.open(fileName.c_str()); } if (!saveFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } saveFile << "Weight(s)" << layer_info << std::endl; for (uint32_t i = 0; i < weights.size(); i++) { for (uint32_t j = 0; j < weights[i].size(); j++) { saveFile << weights[i][j] << std::endl; } } saveFile << "Bias(es)" << layer_info << std::endl; for (uint32_t i = 0; i < bias.size(); i++) { saveFile << bias[i] << std::endl; } saveFile.close(); } void MLPPUtilities::UI(std::vector weights, real_t bias) { std::cout << "Values of the weight(s):" << std::endl; for (uint32_t i = 0; i < weights.size(); i++) { std::cout << weights[i] << std::endl; } std::cout << "Value of the bias:" << std::endl; std::cout << bias << std::endl; } void MLPPUtilities::UI(std::vector> weights, std::vector bias) { std::cout << "Values of the weight(s):" << std::endl; for (uint32_t i = 0; i < weights.size(); i++) { for (uint32_t j = 0; j < weights[i].size(); j++) { std::cout << weights[i][j] << std::endl; } } std::cout << "Value of the biases:" << std::endl; for (uint32_t i = 0; i < bias.size(); i++) { std::cout << bias[i] << std::endl; } } void MLPPUtilities::UI(std::vector weights, std::vector initial, real_t bias) { std::cout << "Values of the weight(s):" << std::endl; for (uint32_t i = 0; i < weights.size(); i++) { std::cout << weights[i] << std::endl; } std::cout << "Values of the initial(s):" << std::endl; for (uint32_t i = 0; i < initial.size(); i++) { std::cout << initial[i] << std::endl; } std::cout << "Value of the bias:" << std::endl; std::cout << bias << std::endl; } void MLPPUtilities::print_ui_vb(Ref weights, real_t bias) { String str = "Values of the weight(s):\n"; str += weights->to_string(); str += "\nValue of the bias:\n"; str += String::num(bias); PLOG_MSG(str); } void MLPPUtilities::print_ui_vib(Ref weights, Ref initial, real_t bias) { String str = "Values of the weight(s):\n"; str += weights->to_string(); str += "\nValues of the initial(s):\n"; str += initial->to_string(); str += "\nValue of the bias:\n"; str += String::num(bias); PLOG_MSG(str); } void MLPPUtilities::print_ui_mb(Ref weights, Ref bias) { String str = "Values of the weight(s):\n"; str += weights->to_string(); str += "\nValue of the biased:\n"; str += bias->to_string(); PLOG_MSG(str); } void MLPPUtilities::CostInfo(int epoch, real_t cost_prev, real_t Cost) { std::cout << "-----------------------------------" << std::endl; std::cout << "This is epoch: " << epoch << std::endl; std::cout << "The cost function has been minimized by " << cost_prev - Cost << std::endl; std::cout << "Current Cost:" << std::endl; std::cout << Cost << std::endl; } void MLPPUtilities::cost_info(int epoch, real_t cost_prev, real_t cost) { String str = "This is epoch: " + itos(epoch) + ","; str += "The cost function has been minimized by " + String::num(cost_prev - cost); str += ", Current Cost:" + String::num(cost); PLOG_MSG(str); } std::vector>> MLPPUtilities::createMiniBatches(std::vector> inputSet, int n_mini_batch) { int n = inputSet.size(); std::vector>> inputMiniBatches; // Creating the mini-batches for (int i = 0; i < n_mini_batch; i++) { std::vector> currentInputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); } if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); } } return inputMiniBatches; } std::tuple>>, std::vector>> MLPPUtilities::createMiniBatches(std::vector> inputSet, std::vector outputSet, int n_mini_batch) { int n = inputSet.size(); std::vector>> inputMiniBatches; std::vector> outputMiniBatches; for (int i = 0; i < n_mini_batch; i++) { std::vector> currentInputSet; std::vector currentOutputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); outputMiniBatches.push_back(currentOutputSet); } if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]); } } return { inputMiniBatches, outputMiniBatches }; } std::tuple>>, std::vector>>> MLPPUtilities::createMiniBatches(std::vector> inputSet, std::vector> outputSet, int n_mini_batch) { int n = inputSet.size(); std::vector>> inputMiniBatches; std::vector>> outputMiniBatches; for (int i = 0; i < n_mini_batch; i++) { std::vector> currentInputSet; std::vector> currentOutputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); outputMiniBatches.push_back(currentOutputSet); } if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]); } } return { inputMiniBatches, outputMiniBatches }; } Vector> MLPPUtilities::create_mini_batchesm(const Ref &input_set, int n_mini_batch) { Size2i size = input_set->size(); int n = size.y; int mini_batch_element_count = n / n_mini_batch; Ref row_tmp; row_tmp.instance(); row_tmp->resize(size.x); Vector> input_mini_batches; // Creating the mini-batches for (int i = 0; i < n_mini_batch; i++) { int mini_batch_start_offset = n_mini_batch * i; Ref current_input_set; current_input_set.instance(); current_input_set->resize(Size2i(size.x, mini_batch_element_count)); for (int j = 0; j < mini_batch_element_count; j++) { input_set->row_get_into_mlpp_vector(mini_batch_start_offset + j, row_tmp); current_input_set->row_set_mlpp_vector(j, row_tmp); } input_mini_batches.push_back(current_input_set); } /* Don't think this can ever happen, todo double check if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n_mini_batch * n_mini_batch + i]); } } */ return input_mini_batches; } MLPPUtilities::CreateMiniBatchMVBatch MLPPUtilities::create_mini_batchesmv(const Ref &input_set, const Ref &output_set, int n_mini_batch) { Size2i size = input_set->size(); int n = size.y; int mini_batch_element_count = n / n_mini_batch; Ref row_tmp; row_tmp.instance(); row_tmp->resize(size.x); CreateMiniBatchMVBatch ret; for (int i = 0; i < n_mini_batch; i++) { int mini_batch_start_offset = mini_batch_element_count * i; Ref current_input_set; current_input_set.instance(); current_input_set->resize(Size2i(size.x, mini_batch_element_count)); Ref current_output_set; current_output_set.instance(); current_output_set->resize(mini_batch_element_count); for (int j = 0; j < mini_batch_element_count; j++) { int main_indx = mini_batch_start_offset + j; input_set->row_get_into_mlpp_vector(main_indx, row_tmp); current_input_set->row_set_mlpp_vector(j, row_tmp); current_output_set->element_set(j, output_set->element_get(j)); } ret.input_sets.push_back(current_input_set); ret.output_sets.push_back(current_output_set); } /* Don't think this can ever happen, todo double check if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]); } } */ return ret; } MLPPUtilities::CreateMiniBatchMMBatch MLPPUtilities::create_mini_batchesmm(const Ref &input_set, const Ref &output_set, int n_mini_batch) { Size2i input_set_size = input_set->size(); Size2i output_set_size = output_set->size(); int n = input_set_size.y; int mini_batch_element_count = n / n_mini_batch; Ref input_row_tmp; input_row_tmp.instance(); input_row_tmp->resize(input_set_size.x); Ref output_row_tmp; output_row_tmp.instance(); output_row_tmp->resize(output_set_size.x); CreateMiniBatchMMBatch ret; for (int i = 0; i < n_mini_batch; i++) { int mini_batch_start_offset = n_mini_batch * i; Ref current_input_set; current_input_set.instance(); current_input_set->resize(Size2i(input_set_size.x, mini_batch_element_count)); Ref current_output_set; current_output_set.instance(); current_output_set->resize(Size2i(output_set_size.x, mini_batch_element_count)); for (int j = 0; j < mini_batch_element_count; j++) { int main_indx = mini_batch_start_offset + j; input_set->row_get_into_mlpp_vector(main_indx, input_row_tmp); current_input_set->row_set_mlpp_vector(j, input_row_tmp); output_set->row_get_into_mlpp_vector(main_indx, output_row_tmp); current_output_set->row_set_mlpp_vector(j, output_row_tmp); } ret.input_sets.push_back(current_input_set); ret.output_sets.push_back(current_output_set); } /* Don't think this can ever happen, todo double check if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); } } */ return ret; } Array MLPPUtilities::create_mini_batchesm_bind(const Ref &input_set, int n_mini_batch) { Vector> batches = create_mini_batchesm(input_set, n_mini_batch); Array ret; for (int i = 0; i < batches.size(); ++i) { ret.push_back(batches[i].get_ref_ptr()); } return ret; } Array MLPPUtilities::create_mini_batchesmv_bind(const Ref &input_set, const Ref &output_set, int n_mini_batch) { CreateMiniBatchMVBatch batches = create_mini_batchesmv(input_set, output_set, n_mini_batch); Array inputs; Array outputs; for (int i = 0; i < batches.input_sets.size(); ++i) { inputs.push_back(batches.input_sets[i].get_ref_ptr()); outputs.push_back(batches.output_sets[i].get_ref_ptr()); } Array ret; ret.push_back(inputs); ret.push_back(outputs); return ret; } Array MLPPUtilities::create_mini_batchesmm_bind(const Ref &input_set, const Ref &output_set, int n_mini_batch) { CreateMiniBatchMMBatch batches = create_mini_batchesmm(input_set, output_set, n_mini_batch); Array inputs; Array outputs; for (int i = 0; i < batches.input_sets.size(); ++i) { inputs.push_back(batches.input_sets[i].get_ref_ptr()); outputs.push_back(batches.output_sets[i].get_ref_ptr()); } Array ret; ret.push_back(inputs); ret.push_back(outputs); return ret; } std::tuple MLPPUtilities::TF_PN(std::vector y_hat, std::vector y) { real_t TP = 0; real_t FP = 0; real_t TN = 0; real_t FN = 0; for (uint32_t i = 0; i < y_hat.size(); i++) { if (y_hat[i] == y[i]) { if (y_hat[i] == 1) { TP++; } else { TN++; } } else { if (y_hat[i] == 1) { FP++; } else { FN++; } } } return { TP, FP, TN, FN }; } real_t MLPPUtilities::recall(std::vector y_hat, std::vector y) { auto res = TF_PN(y_hat, y); auto TP = std::get<0>(res); //auto FP = std::get<1>(res); //auto TN = std::get<2>(res); auto FN = std::get<3>(res); return TP / (TP + FN); } real_t MLPPUtilities::precision(std::vector y_hat, std::vector y) { auto res = TF_PN(y_hat, y); auto TP = std::get<0>(res); auto FP = std::get<1>(res); //auto TN = std::get<2>(res); //auto FN = std::get<3>(res); return TP / (TP + FP); } real_t MLPPUtilities::accuracy(std::vector y_hat, std::vector y) { auto res = TF_PN(y_hat, y); auto TP = std::get<0>(res); auto FP = std::get<1>(res); auto TN = std::get<2>(res); auto FN = std::get<3>(res); return (TP + TN) / (TP + FP + FN + TN); } real_t MLPPUtilities::f1_score(std::vector y_hat, std::vector y) { return 2 * precision(y_hat, y) * recall(y_hat, y) / (precision(y_hat, y) + recall(y_hat, y)); } void MLPPUtilities::_bind_methods() { ClassDB::bind_method(D_METHOD("weight_initializationv", "weights", "type"), &MLPPUtilities::weight_initializationv, WEIGHT_DISTRIBUTION_TYPE_DEFAULT); ClassDB::bind_method(D_METHOD("weight_initializationm", "weights", "type"), &MLPPUtilities::weight_initializationm, WEIGHT_DISTRIBUTION_TYPE_DEFAULT); ClassDB::bind_method(D_METHOD("bias_initializationr"), &MLPPUtilities::bias_initializationr); ClassDB::bind_method(D_METHOD("bias_initializationv", "z"), &MLPPUtilities::bias_initializationv); ClassDB::bind_method(D_METHOD("performance_vec", "y_hat", "output_set"), &MLPPUtilities::performance_vec); ClassDB::bind_method(D_METHOD("performance_mat", "y_hat", "y"), &MLPPUtilities::performance_mat); ClassDB::bind_method(D_METHOD("performance_pool_int_array_vec", "y_hat", "output_set"), &MLPPUtilities::performance_pool_int_array_vec); ClassDB::bind_method(D_METHOD("create_mini_batchesm", "input_set", "n_mini_batch"), &MLPPUtilities::create_mini_batchesm_bind); ClassDB::bind_method(D_METHOD("create_mini_batchesmv", "input_set", "output_set", "n_mini_batch"), &MLPPUtilities::create_mini_batchesmv_bind); ClassDB::bind_method(D_METHOD("create_mini_batchesmm", "input_set", "output_set", "n_mini_batch"), &MLPPUtilities::create_mini_batchesmm_bind); BIND_ENUM_CONSTANT(WEIGHT_DISTRIBUTION_TYPE_DEFAULT); BIND_ENUM_CONSTANT(WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL); BIND_ENUM_CONSTANT(WEIGHT_DISTRIBUTION_TYPE_XAVIER_UNIFORM); BIND_ENUM_CONSTANT(WEIGHT_DISTRIBUTION_TYPE_HE_NORMAL); BIND_ENUM_CONSTANT(WEIGHT_DISTRIBUTION_TYPE_HE_UNIFORM); BIND_ENUM_CONSTANT(WEIGHT_DISTRIBUTION_TYPE_LE_CUN_NORMAL); BIND_ENUM_CONSTANT(WEIGHT_DISTRIBUTION_TYPE_LE_CUN_UNIFORM); BIND_ENUM_CONSTANT(WEIGHT_DISTRIBUTION_TYPE_UNIFORM); }