/*************************************************************************/ /* svc.cpp */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "svc.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include Ref MLPPSVC::get_input_set() const { return _input_set; } void MLPPSVC::set_input_set(const Ref &val) { _input_set = val; } Ref MLPPSVC::get_output_set() const { return _output_set; } void MLPPSVC::set_output_set(const Ref &val) { _output_set = val; } real_t MLPPSVC::get_c() const { return _c; } void MLPPSVC::set_c(const real_t val) { _c = val; } Ref MLPPSVC::data_z_get() const { return _z; } void MLPPSVC::data_z_set(const Ref &val) { _z = val; } Ref MLPPSVC::data_y_hat_get() const { return _y_hat; } void MLPPSVC::data_y_hat_set(const Ref &val) { _y_hat = val; } Ref MLPPSVC::data_weights_get() const { return _weights; } void MLPPSVC::data_weights_set(const Ref &val) { _weights = val; } real_t MLPPSVC::data_bias_get() const { return _bias; } void MLPPSVC::data_bias_set(const real_t val) { _bias = val; } Ref MLPPSVC::model_set_test(const Ref &X) { ERR_FAIL_COND_V(needs_init(), Ref()); return evaluatem(X); } real_t MLPPSVC::model_test(const Ref &x) { ERR_FAIL_COND_V(needs_init(), 0); return evaluatev(x); } void MLPPSVC::train_gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); ERR_FAIL_COND(needs_init()); int n = _input_set->size().y; MLPPCost mlpp_cost; MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set, _weights, _c); _weights->sub(_input_set->transposen()->mult_vec(mlpp_cost.hinge_loss_derivwv(_z, _output_set, _c))->scalar_multiplyn(learning_rate / n)); _weights = regularization.reg_weightsv(_weights, learning_rate / n, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE); // Calculating the bias gradients _bias += learning_rate * mlpp_cost.hinge_loss_derivwv(_y_hat, _output_set, _c)->sum_elements() / n; forward_pass(); // UI PORTION if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set, _weights, _c)); MLPPUtilities::print_ui_vb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPSVC::train_sgd(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); ERR_FAIL_COND(needs_init()); int n = _input_set->size().y; MLPPCost mlpp_cost; MLPPActivation avn; MLPPReg regularization; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref output_set_row_tmp; output_set_row_tmp.instance(); output_set_row_tmp->resize(1); Ref z_row_tmp; z_row_tmp.instance(); z_row_tmp->resize(1); real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { int output_index = distribution(generator); _input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp); real_t output_set_indx = _output_set->element_get(output_index); output_set_row_tmp->element_set(0, output_set_indx); //real_t y_hat = Evaluate(input_set_row_tmp); real_t z = propagatev(input_set_row_tmp); z_row_tmp->element_set(0, z); cost_prev = cost(z_row_tmp, output_set_row_tmp, _weights, _c); Ref cost_deriv_vec = mlpp_cost.hinge_loss_derivwv(z_row_tmp, output_set_row_tmp, _c); real_t cost_deriv = cost_deriv_vec->element_get(0); // Weight Updation _weights->sub(input_set_row_tmp->scalar_multiplyn(learning_rate * cost_deriv)); _weights = regularization.reg_weightsv(_weights, learning_rate, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE); // Bias updation _bias -= learning_rate * cost_deriv; //y_hat = Evaluate({ _input_set[output_index] }); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(z_row_tmp, output_set_row_tmp, _weights, _c)); MLPPUtilities::print_ui_vb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPSVC::train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); ERR_FAIL_COND(needs_init()); int n = _input_set->size().y; MLPPCost mlpp_cost; MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch); forward_pass(); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_input_batch_entry = batches.input_sets[i]; Ref current_output_batch_entry = batches.output_sets[i]; Ref y_hat = evaluatem(current_input_batch_entry); Ref z = propagatem(current_input_batch_entry); cost_prev = cost(z, current_output_batch_entry, _weights, _c); // Calculating the weight gradients _weights->subn(current_input_batch_entry->transposen()->mult_vec(mlpp_cost.hinge_loss_derivwv(z, current_output_batch_entry, _c))->scalar_multiplyn(learning_rate / n)); _weights = regularization.reg_weightsv(_weights, learning_rate / n, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE); // Calculating the bias gradients _bias -= learning_rate * mlpp_cost.hinge_loss_derivwv(y_hat, current_output_batch_entry, _c)->sum_elements() / n; forward_pass(); y_hat = evaluatem(current_input_batch_entry); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(z, current_output_batch_entry, _weights, _c)); MLPPUtilities::print_ui_vb(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPSVC::score() { ERR_FAIL_COND_V(needs_init(), 0); MLPPUtilities util; return util.performance_vec(_y_hat, _output_set); } bool MLPPSVC::needs_init() const { if (!_input_set.is_valid()) { return true; } if (!_output_set.is_valid()) { return true; } int n = _input_set->size().y; int k = _input_set->size().x; if (_y_hat->size() != n) { return true; } if (_weights->size() != k) { return true; } return false; } void MLPPSVC::initialize() { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); int n = _input_set->size().y; int k = _input_set->size().x; _y_hat->resize(n); MLPPUtilities util; _weights->resize(k); util.weight_initializationv(_weights); _bias = util.bias_initializationr(); } MLPPSVC::MLPPSVC(const Ref &input_set, const Ref &output_set, real_t c) { _input_set = input_set; _output_set = output_set; _c = c; _z.instance(); _y_hat.instance(); _weights.instance(); _bias = 0; initialize(); } MLPPSVC::MLPPSVC() { _c = 0; _z.instance(); _y_hat.instance(); _weights.instance(); _bias = 0; } MLPPSVC::~MLPPSVC() { } real_t MLPPSVC::cost(const Ref &z, const Ref &y, const Ref &weights, real_t c) { MLPPCost mlpp_cost; return mlpp_cost.hinge_losswv(z, y, weights, c); } Ref MLPPSVC::evaluatem(const Ref &X) { MLPPActivation avn; return avn.sign_normv(X->mult_vec(_weights)->scalar_addn(_bias)); } Ref MLPPSVC::propagatem(const Ref &X) { return X->mult_vec(_weights)->scalar_addn(_bias); } real_t MLPPSVC::evaluatev(const Ref &x) { MLPPActivation avn; return avn.sign_normr(_weights->dot(x) + _bias); } real_t MLPPSVC::propagatev(const Ref &x) { MLPPActivation avn; return _weights->dot(x) + _bias; } // sign ( wTx + b ) void MLPPSVC::forward_pass() { MLPPActivation avn; _z = propagatem(_input_set); _y_hat = avn.sign_normv(_z); } void MLPPSVC::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPSVC::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPSVC::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPSVC::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPSVC::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_c"), &MLPPSVC::get_c); ClassDB::bind_method(D_METHOD("set_c", "val"), &MLPPSVC::set_c); ADD_PROPERTY(PropertyInfo(Variant::REAL, "c"), "set_c", "get_c"); ClassDB::bind_method(D_METHOD("data_z_get"), &MLPPSVC::data_z_get); ClassDB::bind_method(D_METHOD("data_z_set", "val"), &MLPPSVC::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_z_set", "data_z_get"); ClassDB::bind_method(D_METHOD("data_y_hat_get"), &MLPPSVC::data_y_hat_get); ClassDB::bind_method(D_METHOD("data_y_hat_set", "val"), &MLPPSVC::data_y_hat_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_y_hat", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_y_hat_set", "data_y_hat_get"); ClassDB::bind_method(D_METHOD("data_weights_get"), &MLPPSVC::data_weights_get); ClassDB::bind_method(D_METHOD("data_weights_set", "val"), &MLPPSVC::data_weights_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_weights_set", "data_weights_get"); ClassDB::bind_method(D_METHOD("data_bias_get"), &MLPPSVC::data_bias_get); ClassDB::bind_method(D_METHOD("data_bias_set", "val"), &MLPPSVC::data_bias_set); ADD_PROPERTY(PropertyInfo(Variant::REAL, "data_bias"), "data_bias_set", "data_bias_get"); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPSVC::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPSVC::model_test); ClassDB::bind_method(D_METHOD("train_gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPSVC::train_gradient_descent, false); ClassDB::bind_method(D_METHOD("train_sgd", "learning_rate", "max_epoch", "ui"), &MLPPSVC::train_sgd, false); ClassDB::bind_method(D_METHOD("train_mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPSVC::train_mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPSVC::score); ClassDB::bind_method(D_METHOD("needs_init"), &MLPPSVC::needs_init); ClassDB::bind_method(D_METHOD("initialize"), &MLPPSVC::initialize); }