#ifndef MLPP_REG_H #define MLPP_REG_H /*************************************************************************/ /* reg.h */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "core/math/math_defs.h" #include "core/object/reference.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" #include #include class MLPPReg : public Reference { GDCLASS(MLPPReg, Reference); public: enum RegularizationType { REGULARIZATION_TYPE_NONE = 0, REGULARIZATION_TYPE_RIDGE, REGULARIZATION_TYPE_LASSO, REGULARIZATION_TYPE_ELASTIC_NET, REGULARIZATION_TYPE_WEIGHT_CLIPPING, }; real_t reg_termv(const Ref &weights, real_t lambda, real_t alpha, RegularizationType reg); real_t reg_termm(const Ref &weights, real_t lambda, real_t alpha, RegularizationType reg); Ref reg_weightsv(const Ref &weights, real_t lambda, real_t alpha, RegularizationType reg); Ref reg_weightsm(const Ref &weights, real_t lambda, real_t alpha, RegularizationType reg); Ref reg_deriv_termv(const Ref &weights, real_t lambda, real_t alpha, RegularizationType reg); Ref reg_deriv_termm(const Ref &weights, real_t lambda, real_t alpha, RegularizationType reg); MLPPReg(); ~MLPPReg(); protected: static void _bind_methods(); private: real_t reg_deriv_termvr(const Ref &weights, real_t lambda, real_t alpha, RegularizationType reg, int j); real_t reg_deriv_termmr(const Ref &weights, real_t lambda, real_t alpha, RegularizationType reg, int i, int j); }; VARIANT_ENUM_CAST(MLPPReg::RegularizationType); #endif /* Reg_hpp */