#ifndef MLPP_MLP_H #define MLPP_MLP_H /*************************************************************************/ /* mlp.h */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "core/containers/vector.h" #include "core/math/math_defs.h" #include "core/string/ustring.h" #include "core/variant/variant.h" #include "core/object/reference.h" #include "../regularization/reg.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" #include #include #include class MLPPMLP : public Reference { GDCLASS(MLPPMLP, Reference); public: Ref get_input_set(); void set_input_set(const Ref &val); Ref get_output_set(); void set_output_set(const Ref &val); int get_n_hidden(); void set_n_hidden(const int val); real_t get_lambda(); void set_lambda(const real_t val); real_t get_alpha(); void set_alpha(const real_t val); MLPPReg::RegularizationType get_reg(); void set_reg(const MLPPReg::RegularizationType val); Ref model_set_test(const Ref &X); real_t model_test(const Ref &x); bool is_initialized(); void initialize(); void gradient_descent(real_t learning_rate, int max_epoch, bool UI = false); void sgd(real_t learning_rate, int max_epoch, bool UI = false); void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false); real_t score(); void save(const String &file_name); MLPPMLP(const Ref &p_input_set, const Ref &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5); MLPPMLP(); ~MLPPMLP(); protected: real_t cost(const Ref &y_hat, const Ref &y); Ref evaluatem(const Ref &X); void propagatem(const Ref &X, Ref z2_out, Ref a2_out); real_t evaluatev(const Ref &x); void propagatev(const Ref &x, Ref z2_out, Ref a2_out); void forward_pass(); static void _bind_methods(); Ref _input_set; Ref _output_set; Ref _y_hat; Ref _weights1; Ref _weights2; Ref _bias1; real_t _bias2; Ref _z2; Ref _a2; int _n; int _k; int _n_hidden; // Regularization Params MLPPReg::RegularizationType _reg; real_t _lambda; /* Regularization Parameter */ real_t _alpha; /* This is the controlling param for Elastic Net*/ bool _initialized; }; #endif /* MLP_hpp */