#ifndef MLPP_GAN_H #define MLPP_GAN_H /*************************************************************************/ /* gan.h */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "core/math/math_defs.h" #include "core/object/reference.h" #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" #include "../lin_alg/mlpp_tensor3.h" #include "../activation/activation.h" #include "../utilities/utilities.h" class MLPPGAN : public Reference { GDCLASS(MLPPGAN, Reference); public: /* Ref get_input_set(); void set_input_set(const Ref &val); Ref get_output_set(); void set_output_set(const Ref &val); int get_k(); void set_k(const int val); */ Ref generate_example(int n); void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); real_t score(); void save(const String &file_name); void add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); void add_output_layer(MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); MLPPGAN(real_t k, const Ref &output_set); MLPPGAN(); ~MLPPGAN(); protected: Ref model_set_test_generator(const Ref &X); // Evaluator for the generator of the gan. Ref model_set_test_discriminator(const Ref &X); // Evaluator for the discriminator of the gan. real_t cost(const Ref &y_hat, const Ref &y); void forward_pass(); void update_discriminator_parameters(const Ref &hidden_layer_updations, const Ref &output_layer_updation, real_t learning_rate); void update_generator_parameters(const Ref &hidden_layer_updations, real_t learning_rate); struct ComputeDiscriminatorGradientsResult { Ref cumulative_hidden_layer_w_grad; // Tensor containing ALL hidden grads. Ref output_w_grad; ComputeDiscriminatorGradientsResult() { cumulative_hidden_layer_w_grad.instance(); output_w_grad.instance(); } }; ComputeDiscriminatorGradientsResult compute_discriminator_gradients(const Ref &y_hat, const Ref &output_set); Ref compute_generator_gradients(const Ref &y_hat, const Ref &output_set); void print_ui(int epoch, real_t cost_prev, const Ref &y_hat, const Ref &output_set); static void _bind_methods(); Ref _output_set; Ref _y_hat; Vector> _network; Ref _output_layer; int _n; int _k; }; #endif /* GAN_hpp */