/*************************************************************************/ /* auto_encoder.cpp */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "auto_encoder.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../utilities/utilities.h" #include "core/log/logger.h" #include //UDPATE Ref MLPPAutoEncoder::get_input_set() { return _input_set; } void MLPPAutoEncoder::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } int MLPPAutoEncoder::get_n_hidden() { return _n_hidden; } void MLPPAutoEncoder::set_n_hidden(const int val) { _n_hidden = val; _initialized = false; } Ref MLPPAutoEncoder::model_set_test(const Ref &X) { ERR_FAIL_COND_V(!_initialized, Ref()); return evaluatem(X); } Ref MLPPAutoEncoder::model_test(const Ref &x) { ERR_FAIL_COND_V(!_initialized, Ref()); return evaluatev(x); } void MLPPAutoEncoder::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _input_set); // Calculating the errors Ref error = _y_hat->subn(_input_set); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = _a2->transposen()->multn(error); // weights and bias updation for layer 2 _weights2->sub(D2_1->scalar_multiplyn(learning_rate / _n)); // Calculating the bias gradients for layer 2 _bias2->subtract_matrix_rows(error->scalar_multiplyn(learning_rate)); //Calculating the weight/bias for layer 1 Ref D1_1 = error->multn(_weights2->transposen()); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivm(_z2)); Ref D1_3 = _input_set->transposen()->multn(D1_2); // weight an bias updation for layer 1 _weights1->sub(D1_3->scalar_multiplyn(learning_rate / _n)); _bias1->subtract_matrix_rows(D1_2->scalar_multiplyn(learning_rate / _n)); forward_pass(); // UI PORTION if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _input_set)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPAutoEncoder::sgd(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref input_set_mat_tmp; input_set_mat_tmp.instance(); input_set_mat_tmp->resize(Size2i(_input_set->size().x, 1)); Ref y_hat_mat_tmp; y_hat_mat_tmp.instance(); y_hat_mat_tmp->resize(Size2i(_bias2->size(), 1)); while (true) { int output_index = distribution(generator); _input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp); input_set_mat_tmp->row_set_mlpp_vector(0, input_set_row_tmp); Ref y_hat = evaluatev(input_set_row_tmp); y_hat_mat_tmp->row_set_mlpp_vector(0, y_hat); PropagateVResult prop_res = propagatev(input_set_row_tmp); cost_prev = cost(y_hat_mat_tmp, input_set_mat_tmp); Ref error = y_hat->subn(input_set_row_tmp); // Weight updation for layer 2 Ref D2_1 = error->outer_product(prop_res.a2); _weights2->sub(D2_1->transposen()->scalar_multiplyn(learning_rate)); // Bias updation for layer 2 _bias2->sub(error->scalar_multiplyn(learning_rate)); // Weight updation for layer 1 Ref D1_1 = _weights2->mult_vec(error); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivv(prop_res.z2)); Ref D1_3 = input_set_row_tmp->outer_product(D1_2); _weights1->sub(D1_3->scalar_multiplyn(learning_rate)); // Bias updation for layer 1 _bias1->sub(D1_2->scalar_multiplyn(learning_rate)); y_hat = evaluatev(input_set_row_tmp); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_mat_tmp, input_set_mat_tmp)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPAutoEncoder::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; Vector> batches = MLPPUtilities::create_mini_batchesm(_input_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_batch = batches[i]; Ref y_hat = evaluatem(current_batch); PropagateMResult prop_res = propagatem(current_batch); cost_prev = cost(y_hat, current_batch); // Calculating the errors Ref error = y_hat->subn(current_batch); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = prop_res.a2->transposen()->multn(error); // weights and bias updation for layer 2 _weights2->sub(D2_1->scalar_multiplyn(learning_rate / current_batch->size().y)); // Bias Updation for layer 2 _bias2->sub(error->scalar_multiplyn(learning_rate)); //Calculating the weight/bias for layer 1 Ref D1_1 = _weights2->transposen()->multn(error); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivm(prop_res.z2)); Ref D1_3 = current_batch->transposen()->multn(D1_2); // weight an bias updation for layer 1 _weights2->sub(D1_3->scalar_multiplyn(learning_rate / current_batch->size().x)); _bias1->subtract_matrix_rows(D1_2->scalar_multiplyn(learning_rate / current_batch->size().x)); y_hat = evaluatem(current_batch); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_batch)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPAutoEncoder::score() { ERR_FAIL_COND_V(!_initialized, 0); MLPPUtilities util; return util.performance_mat(_y_hat, _input_set); } void MLPPAutoEncoder::save(const String &file_name) { ERR_FAIL_COND(!_initialized); //MLPPUtilities util; //util.saveParameters(fileName, _weights1, _bias1, false, 1); //util.saveParameters(fileName, _weights2, _bias2, true, 2); } MLPPAutoEncoder::MLPPAutoEncoder(const Ref &p_input_set, int p_n_hidden) { _input_set = p_input_set; _n_hidden = p_n_hidden; _n = _input_set->size().y; _k = _input_set->size().x; _y_hat.instance(); _y_hat->resize(_input_set->size()); MLPPUtilities utilities; _weights1.instance(); _weights1->resize(Size2i(_n_hidden, _k)); utilities.weight_initializationm(_weights1); _weights2.instance(); _weights2->resize(Size2i(_k, _n_hidden)); utilities.weight_initializationm(_weights2); _bias1.instance(); _bias1->resize(_n_hidden); utilities.bias_initializationv(_bias1); _bias2.instance(); _bias2->resize(_k); utilities.bias_initializationv(_bias2); _initialized = true; } MLPPAutoEncoder::MLPPAutoEncoder() { _initialized = false; } MLPPAutoEncoder::~MLPPAutoEncoder() { } real_t MLPPAutoEncoder::cost(const Ref &y_hat, const Ref &y) { MLPPCost mlpp_cost; return mlpp_cost.msem(y_hat, y); } Ref MLPPAutoEncoder::evaluatev(const Ref &x) { MLPPActivation avn; Ref z2 = _weights1->transposen()->mult_vec(x)->addn(_bias1); Ref a2 = avn.sigmoid_normv(z2); return _weights2->transposen()->mult_vec(a2)->addn(_bias2); } MLPPAutoEncoder::PropagateVResult MLPPAutoEncoder::propagatev(const Ref &x) { MLPPActivation avn; PropagateVResult res; res.z2 = _weights1->transposen()->mult_vec(x)->addn(_bias1); res.a2 = avn.sigmoid_normv(res.z2); return res; } Ref MLPPAutoEncoder::evaluatem(const Ref &X) { MLPPActivation avn; Ref z2 = X->multn(_weights1)->add_vecn(_bias1); Ref a2 = avn.sigmoid_normm(z2); return a2->multn(_weights2)->add_vecn(_bias2); } MLPPAutoEncoder::PropagateMResult MLPPAutoEncoder::propagatem(const Ref &X) { MLPPActivation avn; PropagateMResult res; res.z2 = X->multn(_weights1)->add_vecn(_bias1); res.a2 = avn.sigmoid_normm(res.z2); return res; } void MLPPAutoEncoder::forward_pass() { MLPPActivation avn; _z2 = _input_set->multn(_weights1)->add_vecn(_bias1); _a2 = avn.sigmoid_normm(_z2); _y_hat = _a2->multn(_weights2)->add_vecn(_bias2); } void MLPPAutoEncoder::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPAutoEncoder::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPAutoEncoder::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPAutoEncoder::get_n_hidden); ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPAutoEncoder::set_n_hidden); ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden"); /* ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPAutoEncoder::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPAutoEncoder::model_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPAutoEncoder::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPAutoEncoder::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPAutoEncoder::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPAutoEncoder::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPAutoEncoder::save); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPAutoEncoder::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPAutoEncoder::initialize); */ }