#ifndef MLPP_ANN_H #define MLPP_ANN_H #include "core/math/math_defs.h" #include "core/object/reference.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_tensor3.h" #include "../lin_alg/mlpp_vector.h" #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" class MLPPANN : public Reference { GDCLASS(MLPPANN, Reference); public: enum SchedulerType { SCHEDULER_TYPE_NONE = 0, SCHEDULER_TYPE_TIME, SCHEDULER_TYPE_EPOCH, SCHEDULER_TYPE_STEP, SCHEDULER_TYPE_EXPONENTIAL, }; public: Ref model_set_test(const Ref &X); real_t model_test(const Ref &x); void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); void sgd(real_t learning_rate, int max_epoch, bool ui = false); void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false); void momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool nag, bool ui = false); void adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool ui = false); void adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool ui = false); void adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false); void adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false); void nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false); void amsgrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false); real_t score(); void save(const String &file_name); void set_learning_rate_scheduler(SchedulerType type, real_t decay_constant); void set_learning_rate_scheduler_drop(SchedulerType type, real_t decay_constant, real_t drop_rate); void add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); void add_output_layer(MLPPActivation::ActivationFunction activation, MLPPCost::CostTypes loss, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); MLPPANN(const Ref &p_input_set, const Ref &p_output_set); MLPPANN(); ~MLPPANN(); protected: real_t apply_learning_rate_scheduler(real_t learning_rate, real_t decay_constant, real_t epoch, real_t drop_rate); real_t cost(const Ref &y_hat, const Ref &y); void forward_pass(); void update_parameters(const Vector> &hidden_layer_updations, const Ref &output_layer_updation, real_t learning_rate); struct ComputeGradientsResult { Vector> cumulative_hidden_layer_w_grad; Ref output_w_grad; ComputeGradientsResult() { output_w_grad.instance(); } }; ComputeGradientsResult compute_gradients(const Ref &y_hat, const Ref &_output_set); void print_ui(int epoch, real_t cost_prev, const Ref &y_hat, const Ref &p_output_set); static void _bind_methods(); Ref _input_set; Ref _output_set; Ref _y_hat; Vector> _network; Ref _output_layer; int _n; int _k; SchedulerType _lr_scheduler; real_t _decay_constant; real_t _drop_rate; }; VARIANT_ENUM_CAST(MLPPANN::SchedulerType); #endif /* ANN_hpp */