#ifndef MLPP_C_LOG_LOG_REG_H #define MLPP_C_LOG_LOG_REG_H // // CLogLogReg.hpp // // Created by Marc Melikyan on 10/2/20. // #include "core/math/math_defs.h" #include "core/object/reference.h" #include #include class MLPPCLogLogReg : public Reference { GDCLASS(MLPPCLogLogReg, Reference); public: std::vector model_set_test(std::vector> X); real_t model_test(std::vector x); void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); void mle(real_t learning_rate, int max_epoch, bool ui = false); void sgd(real_t learning_rate, int max_epoch, bool ui = false); void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false); real_t score(); MLPPCLogLogReg(std::vector> p_input_set, std::vector p_output_set, std::string p_reg = "None", real_t p_lambda = 0.5, real_t p_alpha = 0.5); MLPPCLogLogReg(); ~MLPPCLogLogReg(); protected: void weight_initialization(int k); void bias_initialization(); real_t cost(std::vector y_hat, std::vector y); real_t evaluatev(std::vector x); real_t propagatev(std::vector x); std::vector evaluatem(std::vector> X); std::vector propagatem(std::vector> X); void forward_pass(); static void _bind_methods(); std::vector> _input_set; std::vector _output_set; std::vector _y_hat; std::vector _z; std::vector _weights; real_t bias; int _n; int _k; // Regularization Params std::string _reg; real_t _lambda; real_t _alpha; /* This is the controlling param for Elastic Net*/ }; #endif /* CLogLogReg_hpp */