#ifndef MLPP_SOFTMAX_REG_H #define MLPP_SOFTMAX_REG_H /*************************************************************************/ /* softmax_reg.h */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2022-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "core/math/math_defs.h" #include "core/object/resource.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" #include "../regularization/reg.h" class MLPPSoftmaxReg : public Resource { GDCLASS(MLPPSoftmaxReg, Resource); public: Ref get_input_set() const; void set_input_set(const Ref &val); Ref get_output_set() const; void set_output_set(const Ref &val); MLPPReg::RegularizationType get_reg() const; void set_reg(const MLPPReg::RegularizationType val); real_t get_lambda() const; void set_lambda(const real_t val); real_t get_alpha() const; void set_alpha(const real_t val); Ref data_y_hat_get() const; void data_y_hat_set(const Ref &val); Ref data_weights_get() const; void data_weights_set(const Ref &val); Ref data_bias_get() const; void data_bias_set(const Ref &val); Ref model_test(const Ref &x); Ref model_set_test(const Ref &X); void train_gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); void train_sgd(real_t learning_rate, int max_epoch, bool ui = false); void train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false); real_t score(); bool needs_init() const; void initialize(); MLPPSoftmaxReg(const Ref &p_input_set, const Ref &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5); MLPPSoftmaxReg(); ~MLPPSoftmaxReg(); protected: real_t cost(const Ref &y_hat, const Ref &y); Ref evaluatev(const Ref &x); Ref evaluatem(const Ref &X); void forward_pass(); static void _bind_methods(); Ref _input_set; Ref _output_set; // Regularization Params MLPPReg::RegularizationType _reg; real_t _lambda; real_t _alpha; /* This is the controlling param for Elastic Net*/ Ref _y_hat; Ref _weights; Ref _bias; }; #endif /* SoftmaxReg_hpp */