#ifndef MLPP_OUTPUT_LAYER_H #define MLPP_OUTPUT_LAYER_H /*************************************************************************/ /* output_layer.h */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2022-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "core/math/math_defs.h" #include "core/string/ustring.h" #include "core/object/reference.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" class MLPPOutputLayer : public Reference { GDCLASS(MLPPOutputLayer, Reference); public: int get_n_hidden(); void set_n_hidden(const int val); MLPPActivation::ActivationFunction get_activation(); void set_activation(const MLPPActivation::ActivationFunction val); MLPPCost::CostTypes get_cost(); void set_cost(const MLPPCost::CostTypes val); Ref get_input(); void set_input(const Ref &val); Ref get_weights(); void set_weights(const Ref &val); real_t get_bias(); void set_bias(const real_t val); Ref get_z(); void set_z(const Ref &val); Ref get_a(); void set_a(const Ref &val); real_t get_z_test(); void set_z_test(const real_t val); real_t get_a_test(); void set_a_test(const real_t val); Ref get_delta(); void set_delta(const Ref &val); MLPPReg::RegularizationType get_reg(); void set_reg(const MLPPReg::RegularizationType val); real_t get_lambda(); void set_lambda(const real_t val); real_t get_alpha(); void set_alpha(const real_t val); MLPPUtilities::WeightDistributionType get_weight_init(); void set_weight_init(const MLPPUtilities::WeightDistributionType val); bool is_initialized(); void initialize(); void forward_pass(); void test(const Ref &x); MLPPOutputLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, MLPPCost::CostTypes p_cost, Ref p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha); MLPPOutputLayer(); ~MLPPOutputLayer(); protected: static void _bind_methods(); int _n_hidden; MLPPActivation::ActivationFunction _activation; MLPPCost::CostTypes _cost; Ref _input; Ref _weights; real_t _bias; Ref _z; Ref _a; real_t _z_test; real_t _a_test; Ref _delta; // Regularization Params MLPPReg::RegularizationType _reg; real_t _lambda; /* Regularization Parameter */ real_t _alpha; /* This is the controlling param for Elastic Net*/ MLPPUtilities::WeightDistributionType _weight_init; bool _initialized; }; #endif /* OutputLayer_hpp */