/*************************************************************************/ /* bernoulli_nb.cpp */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2022-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "bernoulli_nb.h" #include "../data/data.h" #include "../utilities/utilities.h" #include #include Ref MLPPBernoulliNB::model_set_test(const Ref &X) { Ref y_hat; y_hat.instance(); y_hat->resize(X->size().y); Ref x_row_tmp; x_row_tmp.instance(); x_row_tmp->resize(X->size().x); for (int i = 0; i < X->size().y; i++) { X->row_get_into_mlpp_vector(i, x_row_tmp); y_hat->element_set(i, model_test(x_row_tmp)); } return y_hat; } real_t MLPPBernoulliNB::model_test(const Ref &x) { real_t score_0 = 1; real_t score_1 = 1; Vector found_indices; for (int j = 0; j < x->size(); j++) { for (int k = 0; k < _vocab->size(); k++) { if (x->element_get(j) == _vocab->element_get(k)) { score_0 *= _theta[0][_vocab->element_get(k)]; score_1 *= _theta[1][_vocab->element_get(k)]; found_indices.push_back(k); } } } for (int i = 0; i < _vocab->size(); i++) { bool found = false; for (int j = 0; j < found_indices.size(); j++) { if (_vocab->element_get(i) == _vocab->element_get(found_indices[j])) { found = true; } } if (!found) { score_0 *= 1 - _theta[0][_vocab->element_get(i)]; score_1 *= 1 - _theta[1][_vocab->element_get(i)]; } } score_0 *= _prior_0; score_1 *= _prior_1; // Assigning the traning example to a class if (score_0 > score_1) { return 0; } else { return 1; } } real_t MLPPBernoulliNB::score() { MLPPUtilities util; return util.performance_vec(_y_hat, _output_set); } MLPPBernoulliNB::MLPPBernoulliNB(const Ref &p_input_set, const Ref &p_output_set) { _input_set = p_input_set; _output_set = p_output_set; _class_num = 2; _prior_1 = 0; _prior_0 = 0; _vocab.instance(); _y_hat.instance(); _y_hat->resize(_output_set->size()); evaluate(); } MLPPBernoulliNB::MLPPBernoulliNB() { _prior_1 = 0; _prior_0 = 0; } MLPPBernoulliNB::~MLPPBernoulliNB() { } void MLPPBernoulliNB::compute_vocab() { MLPPData data; _vocab = data.vec_to_setnv(_input_set->flatten()); } void MLPPBernoulliNB::compute_theta() { // Resizing theta for the sake of ease & proper access of the elements. _theta.resize(_class_num); // Setting all values in the hasmap by default to 0. for (int i = _class_num - 1; i >= 0; i--) { for (int j = 0; j < _vocab->size(); j++) { _theta.write[i][_vocab->element_get(j)] = 0; } } for (int i = 0; i < _input_set->size().y; i++) { for (int j = 0; j < _input_set->size().x; j++) { _theta.write[_output_set->element_get(i)][_input_set->element_get(i, j)]++; } } for (int i = 0; i < _theta.size(); i++) { for (uint32_t j = 0; j < _theta[i].size(); j++) { if (i == 0) { _theta.write[i][j] /= _prior_0 * _y_hat->size(); } else { _theta.write[i][j] /= _prior_1 * _y_hat->size(); } } } } void MLPPBernoulliNB::evaluate() { for (int i = 0; i < _output_set->size(); i++) { // Pr(B | A) * Pr(A) real_t score_0 = 1; real_t score_1 = 1; real_t sum = 0; for (int ii = 0; ii < _output_set->size(); ii++) { if (_output_set->element_get(ii) == 1) { sum += 1; } } // Easy computation of priors, i.e. Pr(C_k) _prior_1 = sum / _y_hat->size(); _prior_0 = 1 - _prior_1; // Evaluating Theta... compute_theta(); // Evaluating the vocab set... compute_vocab(); Vector found_indices; for (int j = 0; j < _input_set->size().x; j++) { for (int k = 0; k < _vocab->size(); k++) { if (_input_set->element_get(i, j) == _vocab->element_get(k)) { score_0 += Math::log(static_cast(_theta[0][_vocab->element_get(k)])); score_1 += Math::log(static_cast(_theta[1][_vocab->element_get(k)])); found_indices.push_back(k); } } } for (int ii = 0; ii < _vocab->size(); ii++) { bool found = false; for (int j = 0; j < found_indices.size(); j++) { if (_vocab->element_get(ii) == _vocab->element_get(found_indices[j])) { found = true; } } if (!found) { score_0 += Math::log(1.0 - _theta[0][_vocab->element_get(ii)]); score_1 += Math::log(1.0 - _theta[1][_vocab->element_get(ii)]); } } score_0 += Math::log(_prior_0); score_1 += Math::log(_prior_1); score_0 = Math::exp(score_0); score_1 = Math::exp(score_1); // Assigning the traning example to a class if (score_0 > score_1) { _y_hat->element_set(i, 0); } else { _y_hat->element_set(i, 1); } } } void MLPPBernoulliNB::_bind_methods() { }