// // ProbitReg.cpp // // Created by Marc Melikyan on 10/2/20. // #include "probit_reg.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include Ref MLPPProbitReg::get_input_set() { return _input_set; } void MLPPProbitReg::set_input_set(const Ref &val) { _input_set = val; } Ref MLPPProbitReg::get_output_set() { return _output_set; } void MLPPProbitReg::set_output_set(const Ref &val) { _output_set = val; } MLPPReg::RegularizationType MLPPProbitReg::get_reg() { return _reg; } void MLPPProbitReg::set_reg(const MLPPReg::RegularizationType val) { _reg = val; } real_t MLPPProbitReg::get_lambda() { return _lambda; } void MLPPProbitReg::set_lambda(const real_t val) { _lambda = val; } real_t MLPPProbitReg::get_alpha() { return _alpha; } void MLPPProbitReg::set_alpha(const real_t val) { _alpha = val; } Ref MLPPProbitReg::data_z_get() const { return _z; } void MLPPProbitReg::data_z_set(const Ref &val) { if (!val.is_valid()) { return; } _z = val; } Ref MLPPProbitReg::data_y_hat_get() const { return _y_hat; } void MLPPProbitReg::data_y_hat_set(const Ref &val) { if (!val.is_valid()) { return; } _y_hat = val; } Ref MLPPProbitReg::data_weights_get() const { return _weights; } void MLPPProbitReg::data_weights_set(const Ref &val) { if (!val.is_valid()) { return; } _weights = val; } real_t MLPPProbitReg::data_bias_get() const { return _bias; } void MLPPProbitReg::data_bias_set(const real_t val) { _bias = val; } Ref MLPPProbitReg::model_set_test(const Ref &X) { ERR_FAIL_COND_V(needs_init(), Ref()); return evaluatem(X); } real_t MLPPProbitReg::model_test(const Ref &x) { ERR_FAIL_COND_V(needs_init(), 0); return evaluatev(x); } void MLPPProbitReg::train_gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(needs_init()); MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; int n = _input_set->size().y; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); Ref error = _y_hat->subn(_output_set); // Calculating the weight gradients _weights->sub(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.gaussian_cdf_derivv(_z)))->scalar_multiplyn(learning_rate / n)); _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias -= learning_rate * error->hadamard_productn(avn.gaussian_cdf_derivv(_z))->sum_elements() / n; forward_pass(); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); MLPPUtilities::print_ui_vb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPProbitReg::train_mle(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(needs_init()); MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; int n = _input_set->size().y; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); Ref error = _output_set->subn(_y_hat); // Calculating the weight gradients _weights->add(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.gaussian_cdf_derivv(_z)))->scalar_multiplyn(learning_rate / n)); _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias += learning_rate * error->hadamard_productn(avn.gaussian_cdf_derivv(_z))->sum_elements() / n; forward_pass(); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); MLPPUtilities::print_ui_vb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPProbitReg::train_sgd(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(needs_init()); // NOTE: ∂y_hat/∂z is sparse MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; int n = _input_set->size().y; Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref output_set_tmp; output_set_tmp.instance(); output_set_tmp->resize(1); Ref y_hat_tmp; y_hat_tmp.instance(); y_hat_tmp->resize(1); std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); while (true) { int output_index = distribution(generator); _input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp); real_t output_set_entry = _output_set->element_get(output_index); real_t y_hat = evaluatev(input_set_row_tmp); real_t z = propagatev(input_set_row_tmp); y_hat_tmp->element_set(0, y_hat); output_set_tmp->element_set(0, output_set_entry); cost_prev = cost(y_hat_tmp, output_set_tmp); real_t error = y_hat - output_set_entry; // Weight Updation _weights->sub(input_set_row_tmp->scalar_multiplyn(learning_rate * error * ((1 / Math::sqrt(2 * Math_PI)) * Math::exp(-z * z / 2)))); _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Bias updation _bias -= learning_rate * error * ((1 / Math::sqrt(2 * Math_PI)) * Math::exp(-z * z / 2)); y_hat = evaluatev(input_set_row_tmp); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_tmp, output_set_tmp)); MLPPUtilities::print_ui_vb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPProbitReg::train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { ERR_FAIL_COND(needs_init()); MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; int n = _input_set->size().y; Ref z_tmp; z_tmp.instance(); z_tmp->resize(1); // Creating the mini-batches int n_mini_batch = n / mini_batch_size; MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_input = batches.input_sets[i]; Ref current_output = batches.output_sets[i]; Ref y_hat = evaluatem(current_input); real_t z = propagatev(current_output); z_tmp->element_set(0, z); cost_prev = cost(y_hat, current_output); Ref error = y_hat->subn(current_output); // Calculating the weight gradients _weights->sub(current_input->transposen()->mult_vec(error->hadamard_productn(avn.gaussian_cdf_derivv(z_tmp)))->scalar_multiplyn(learning_rate / batches.input_sets.size())); _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias -= learning_rate * error->hadamard_productn(avn.gaussian_cdf_derivv(z_tmp))->sum_elements() / batches.input_sets.size(); y_hat = evaluatev(current_input); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output)); MLPPUtilities::print_ui_vb(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPProbitReg::score() { ERR_FAIL_COND_V(needs_init(), 0); MLPPUtilities util; return util.performance_vec(_y_hat, _output_set); } bool MLPPProbitReg::needs_init() const { if (!_input_set.is_valid()) { return true; } if (!_output_set.is_valid()) { return true; } int n = _input_set->size().y; int k = _input_set->size().x; if (_y_hat->size() != n) { return true; } if (_weights->size() != k) { return true; } return false; } void MLPPProbitReg::initialize() { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); int n = _input_set->size().y; int k = _input_set->size().x; _y_hat->resize(n); MLPPUtilities util; _weights->resize(k); util.weight_initializationv(_weights); _bias = util.bias_initializationr(); } MLPPProbitReg::MLPPProbitReg(const Ref &p_input_set, const Ref &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { _input_set = p_input_set; _output_set = p_output_set; _reg = p_reg; _lambda = p_lambda; _alpha = p_alpha; _z.instance(); _y_hat.instance(); _weights.instance(); _bias = 0; initialize(); } MLPPProbitReg::MLPPProbitReg() { // Regularization Params _reg = MLPPReg::REGULARIZATION_TYPE_NONE; _lambda = 0.5; _alpha = 0.5; _z.instance(); _y_hat.instance(); _weights.instance(); _bias = 0; } MLPPProbitReg::~MLPPProbitReg() { } real_t MLPPProbitReg::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; class MLPPCost cost; return cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg); } Ref MLPPProbitReg::evaluatem(const Ref &X) { MLPPActivation avn; return avn.gaussian_cdf_normv(X->mult_vec(_weights)->scalar_addn(_bias)); } Ref MLPPProbitReg::propagatem(const Ref &X) { return X->mult_vec(_weights)->scalar_addn(_bias); } real_t MLPPProbitReg::evaluatev(const Ref &x) { MLPPActivation avn; return avn.gaussian_cdf_normr(_weights->dot(x) + _bias); } real_t MLPPProbitReg::propagatev(const Ref &x) { return _weights->dot(x) + _bias; } // gaussianCDF ( wTx + b ) void MLPPProbitReg::forward_pass() { MLPPActivation avn; _z = propagatem(_input_set); _y_hat = avn.gaussian_cdf_normv(_z); } void MLPPProbitReg::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPProbitReg::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPProbitReg::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPProbitReg::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPProbitReg::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPProbitReg::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPProbitReg::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPProbitReg::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPProbitReg::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPProbitReg::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPProbitReg::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ADD_GROUP("Data", "data"); ClassDB::bind_method(D_METHOD("data_z_get"), &MLPPProbitReg::data_z_get); ClassDB::bind_method(D_METHOD("data_z_set", "val"), &MLPPProbitReg::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_z_set", "data_z_get"); ClassDB::bind_method(D_METHOD("data_y_hat_get"), &MLPPProbitReg::data_y_hat_get); ClassDB::bind_method(D_METHOD("data_y_hat_set", "val"), &MLPPProbitReg::data_y_hat_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_y_hat", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_y_hat_set", "data_y_hat_get"); ClassDB::bind_method(D_METHOD("data_weights_get"), &MLPPProbitReg::data_weights_get); ClassDB::bind_method(D_METHOD("data_weights_set", "val"), &MLPPProbitReg::data_weights_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_weights_set", "data_weights_get"); ClassDB::bind_method(D_METHOD("data_bias_get"), &MLPPProbitReg::data_bias_get); ClassDB::bind_method(D_METHOD("data_bias_set", "val"), &MLPPProbitReg::data_bias_set); ADD_PROPERTY(PropertyInfo(Variant::REAL, "data_bias"), "data_bias_set", "data_bias_get"); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPProbitReg::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPProbitReg::model_test); ClassDB::bind_method(D_METHOD("train_gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::train_gradient_descent, 0, false); ClassDB::bind_method(D_METHOD("train_mle", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::train_mle, 0, false); ClassDB::bind_method(D_METHOD("train_sgd", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::train_sgd, 0, false); ClassDB::bind_method(D_METHOD("train_mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPProbitReg::train_mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPProbitReg::score); ClassDB::bind_method(D_METHOD("needs_init"), &MLPPProbitReg::needs_init); ClassDB::bind_method(D_METHOD("initialize"), &MLPPProbitReg::initialize); }