// // MLP.hpp // // Created by Marc Melikyan on 11/4/20. // #ifndef MLP_hpp #define MLP_hpp #include #include #include namespace MLPP { class MLP{ public: MLP(std::vector> inputSet, std::vector outputSet, int n_hidden, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); std::vector modelSetTest(std::vector> X); double modelTest(std::vector x); void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); void SGD(double learning_rate, int max_epoch, bool UI = 1); void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); double score(); void save(std::string fileName); private: double Cost(std::vector y_hat, std::vector y); std::vector Evaluate(std::vector> X); std::tuple>, std::vector>> propagate(std::vector> X); double Evaluate(std::vector x); std::tuple, std::vector> propagate(std::vector x); void forwardPass(); std::vector> inputSet; std::vector outputSet; std::vector y_hat; std::vector> weights1; std::vector weights2; std::vector bias1; double bias2; std::vector> z2; std::vector> a2; int n; int k; int n_hidden; // Regularization Params std::string reg; double lambda; /* Regularization Parameter */ double alpha; /* This is the controlling param for Elastic Net*/ }; } #endif /* MLP_hpp */