// // MLP.cpp // // Created by Marc Melikyan on 11/4/20. // #include "mlp.h" #include "core/log/logger.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include Ref MLPPMLP::get_input_set() { return _input_set; } void MLPPMLP::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } Ref MLPPMLP::get_output_set() { return _output_set; } void MLPPMLP::set_output_set(const Ref &val) { _output_set = val; _initialized = false; } int MLPPMLP::get_n_hidden() { return _n_hidden; } void MLPPMLP::set_n_hidden(const int val) { _n_hidden = val; _initialized = false; } real_t MLPPMLP::get_lambda() { return _lambda; } void MLPPMLP::set_lambda(const real_t val) { _lambda = val; _initialized = false; } real_t MLPPMLP::get_alpha() { return _alpha; } void MLPPMLP::set_alpha(const real_t val) { _alpha = val; _initialized = false; } MLPPReg::RegularizationType MLPPMLP::get_reg() { return _reg; } void MLPPMLP::set_reg(const MLPPReg::RegularizationType val) { _reg = val; _initialized = false; } Ref MLPPMLP::model_set_test(const Ref &X) { return evaluatem(X); } real_t MLPPMLP::model_test(const Ref &x) { return evaluatev(x); } void MLPPMLP::gradient_descent(real_t learning_rate, int max_epoch, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; _y_hat->fill(0); forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); // Calculating the errors Ref error = _y_hat->subn(_output_set); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = _a2->transposen()->mult_vec(error); // weights and bias updation for layer 2 _weights2->sub(D2_1->scalar_multiplyn(learning_rate / static_cast(_n))); _weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg)); _bias2 -= learning_rate * error->sum_elements() / static_cast(_n); // Calculating the weight/bias for layer 1 Ref D1_1 = error->outer_product(_weights2); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivm(_z2)); Ref D1_3 = _input_set->transposen()->multn(D1_2); // weight an bias updation for layer 1 _weights1->sub(D1_3->scalar_multiplyn(learning_rate / _n)); _weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg)); _bias1->subtract_matrix_rows(D1_2->scalar_multiplyn(learning_rate / _n)); forward_pass(); // UI PORTION if (UI) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_vb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPMLP::sgd(real_t learning_rate, int max_epoch, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref output_set_row_tmp; output_set_row_tmp.instance(); output_set_row_tmp->resize(1); Ref y_hat_row_tmp; y_hat_row_tmp.instance(); y_hat_row_tmp->resize(1); Ref lz2; lz2.instance(); Ref la2; la2.instance(); while (true) { int output_Index = distribution(generator); _input_set->row_get_into_mlpp_vector(output_Index, input_set_row_tmp); real_t output_element = _output_set->element_get(output_Index); output_set_row_tmp->element_set(0, output_element); real_t ly_hat = evaluatev(input_set_row_tmp); y_hat_row_tmp->element_set(0, ly_hat); propagatev(input_set_row_tmp, lz2, la2); cost_prev = cost(y_hat_row_tmp, output_set_row_tmp); real_t error = ly_hat - output_element; // Weight updation for layer 2 Ref D2_1 = la2->scalar_multiplyn(error); _weights2->sub(D2_1->scalar_multiplyn(learning_rate)); _weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg)); // Bias updation for layer 2 _bias2 -= learning_rate * error; // Weight updation for layer 1 Ref D1_1 = _weights2->scalar_multiplyn(error); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivv(lz2)); Ref D1_3 = input_set_row_tmp->outer_product(D1_2); _weights1->sub(D1_3->scalar_multiplyn(learning_rate)); _weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg)); // Bias updation for layer 1 _bias1->sub(D1_2->scalar_multiplyn(learning_rate)); ly_hat = evaluatev(input_set_row_tmp); if (UI) { MLPPUtilities::cost_info(epoch, cost_prev, cost_prev); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_vb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPMLP::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; Ref lz2; lz2.instance(); Ref la2; la2.instance(); // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_input = batches.input_sets[i]; Ref current_output = batches.output_sets[i]; Ref ly_hat = evaluatem(current_input); propagatem(current_input, lz2, la2); cost_prev = cost(ly_hat, current_output); // Calculating the errors Ref error = ly_hat->subn(current_output); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = la2->transposen()->mult_vec(error); real_t lr_d_cos = learning_rate / static_cast(current_output->size()); // weights and bias updation for layser 2 _weights2->sub(D2_1->scalar_multiplyn(lr_d_cos)); _weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg)); // Calculating the bias gradients for layer 2 real_t b_gradient = error->sum_elements(); // Bias Updation for layer 2 _bias2 -= learning_rate * b_gradient / current_output->size(); //Calculating the weight/bias for layer 1 Ref D1_1 = error->outer_product(_weights2); Ref D1_2 = D1_1->hadamard_productn(avn.sigmoid_derivm(lz2)); Ref D1_3 = current_input->transposen()->multn(D1_2); // weight an bias updation for layer 1 _weights1->sub(D1_3->scalar_multiplyn(lr_d_cos)); _weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg)); _bias1->subtract_matrix_rows(D1_2->scalar_multiplyn(lr_d_cos)); _y_hat = evaluatem(current_input); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(ly_hat, current_output)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_vb(_weights2, _bias2); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPMLP::score() { MLPPUtilities util; return util.performance_vec(_y_hat, _output_set); } void MLPPMLP::save(const String &fileName) { ERR_FAIL_COND(!_initialized); MLPPUtilities util; //util.saveParameters(fileName, weights1, bias1, 0, 1); //util.saveParameters(fileName, weights2, bias2, 1, 2); } bool MLPPMLP::is_initialized() { return _initialized; } void MLPPMLP::initialize() { if (_initialized) { return; } ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid() || _n_hidden == 0); _n = _input_set->size().y; _k = _input_set->size().x; MLPPActivation avn; _y_hat->resize(_n); MLPPUtilities util; _weights1->resize(Size2i(_n_hidden, _k)); _weights2->resize(_n_hidden); _bias1->resize(_n_hidden); util.weight_initializationm(_weights1); util.weight_initializationv(_weights2); util.bias_initializationv(_bias1); _bias2 = util.bias_initializationr(); _z2.instance(); _a2.instance(); _initialized = true; } real_t MLPPMLP::cost(const Ref &p_y_hat, const Ref &p_y) { MLPPReg regularization; MLPPCost mlpp_cost; return mlpp_cost.log_lossv(p_y_hat, p_y) + regularization.reg_termv(_weights2, _lambda, _alpha, _reg) + regularization.reg_termm(_weights1, _lambda, _alpha, _reg); } Ref MLPPMLP::evaluatem(const Ref &X) { MLPPActivation avn; Ref pz2 = X->multn(_weights1)->add_vecn(_bias1); Ref pa2 = avn.sigmoid_normm(pz2); return avn.sigmoid_normv(pa2->mult_vec(_weights2)->scalar_addn(_bias2)); } void MLPPMLP::propagatem(const Ref &X, Ref z2_out, Ref a2_out) { MLPPActivation avn; z2_out->set_from_mlpp_matrix(X->multn(_weights1)->add_vecn(_bias1)); a2_out->set_from_mlpp_matrix(avn.sigmoid_normm(z2_out)); } real_t MLPPMLP::evaluatev(const Ref &x) { MLPPActivation avn; Ref pz2 = _weights1->transposen()->mult_vec(x)->addn(_bias1); Ref pa2 = avn.sigmoid_normv(pz2); return avn.sigmoid_normr(_weights2->dot(pa2) + _bias2); } void MLPPMLP::propagatev(const Ref &x, Ref z2_out, Ref a2_out) { MLPPActivation avn; z2_out->set_from_mlpp_vector(_weights1->transposen()->mult_vec(x)->addn(_bias1)); a2_out->set_from_mlpp_vector(avn.sigmoid_normv(z2_out)); } void MLPPMLP::forward_pass() { MLPPActivation avn; _z2->set_from_mlpp_matrix(_input_set->multn(_weights1)->add_vecn(_bias1)); _a2->set_from_mlpp_matrix(avn.sigmoid_normm(_z2)); _y_hat->set_from_mlpp_vector(avn.sigmoid_normv(_a2->mult_vec(_weights2)->scalar_addn(_bias2))); } MLPPMLP::MLPPMLP(const Ref &p_input_set, const Ref &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { _input_set = p_input_set; _output_set = p_output_set; _y_hat.instance(); _weights1.instance(); _weights2.instance(); _z2.instance(); _a2.instance(); _bias1.instance(); _n_hidden = p_n_hidden; _reg = p_reg; _lambda = p_lambda; _alpha = p_alpha; _initialized = false; initialize(); } MLPPMLP::MLPPMLP() { _y_hat.instance(); _n_hidden = 0; _n = 0; _k = 0; _reg = MLPPReg::REGULARIZATION_TYPE_NONE; _lambda = 0.5; _alpha = 0.5; _weights1.instance(); _weights2.instance(); _bias1.instance(); _bias2 = 0; _z2.instance(); _a2.instance(); _initialized = false; } MLPPMLP::~MLPPMLP() { } void MLPPMLP::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMLP::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMLP::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMLP::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMLP::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPMLP::get_n_hidden); ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPMLP::set_n_hidden); ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPMLP::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPMLP::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPMLP::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPMLP::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPMLP::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPMLP::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPMLP::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPMLP::initialize); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPMLP::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPMLP::model_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "UI"), &MLPPMLP::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "UI"), &MLPPMLP::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "UI"), &MLPPMLP::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPMLP::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPMLP::save); }