// // AutoEncoder.cpp // // Created by Marc Melikyan on 11/4/20. // #include "auto_encoder.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../utilities/utilities.h" #include //UDPATE Ref MLPPAutoEncoder::get_input_set() { return Ref(); //return _input_set; } void MLPPAutoEncoder::set_input_set(const Ref &val) { //_input_set = val; _initialized = false; } int MLPPAutoEncoder::get_n_hidden() { return _n_hidden; } void MLPPAutoEncoder::set_n_hidden(const int val) { _n_hidden = val; _initialized = false; } std::vector> MLPPAutoEncoder::model_set_test(std::vector> X) { ERR_FAIL_COND_V(!_initialized, std::vector>()); return evaluatem(X); } std::vector MLPPAutoEncoder::model_test(std::vector x) { ERR_FAIL_COND_V(!_initialized, std::vector()); return evaluatev(x); } void MLPPAutoEncoder::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _input_set); // Calculating the errors std::vector> error = alg.subtraction(_y_hat, _input_set); // Calculating the weight/bias gradients for layer 2 std::vector> D2_1 = alg.matmult(alg.transpose(_a2), error); // weights and bias updation for layer 2 _weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate / _n, D2_1)); // Calculating the bias gradients for layer 2 _bias2 = alg.subtractMatrixRows(_bias2, alg.scalarMultiply(learning_rate, error)); //Calculating the weight/bias for layer 1 std::vector> D1_1 = alg.matmult(error, alg.transpose(_weights2)); std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(_z2, 1)); std::vector> D1_3 = alg.matmult(alg.transpose(_input_set), D1_2); // weight an bias updation for layer 1 _weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate / _n, D1_3)); _bias1 = alg.subtractMatrixRows(_bias1, alg.scalarMultiply(learning_rate / _n, D1_2)); forward_pass(); // UI PORTION if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _input_set)); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(_weights1, _bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPAutoEncoder::sgd(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; while (true) { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); int outputIndex = distribution(generator); std::vector y_hat = evaluatev(_input_set[outputIndex]); auto prop_res = propagatev(_input_set[outputIndex]); auto z2 = std::get<0>(prop_res); auto a2 = std::get<1>(prop_res); cost_prev = cost({ y_hat }, { _input_set[outputIndex] }); std::vector error = alg.subtraction(y_hat, _input_set[outputIndex]); // Weight updation for layer 2 std::vector> D2_1 = alg.outerProduct(error, a2); _weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate, alg.transpose(D2_1))); // Bias updation for layer 2 _bias2 = alg.subtraction(_bias2, alg.scalarMultiply(learning_rate, error)); // Weight updation for layer 1 std::vector D1_1 = alg.mat_vec_mult(_weights2, error); std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); std::vector> D1_3 = alg.outerProduct(_input_set[outputIndex], D1_2); _weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate, D1_3)); // Bias updation for layer 1 _bias1 = alg.subtraction(_bias1, alg.scalarMultiply(learning_rate, D1_2)); y_hat = evaluatev(_input_set[outputIndex]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost({ y_hat }, { _input_set[outputIndex] })); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(_weights1, _bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPAutoEncoder::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; std::vector>> inputMiniBatches = MLPPUtilities::createMiniBatches(_input_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector> y_hat = evaluatem(inputMiniBatches[i]); auto prop_res = propagatem(inputMiniBatches[i]); auto z2 = std::get<0>(prop_res); auto a2 = std::get<1>(prop_res); cost_prev = cost(y_hat, inputMiniBatches[i]); // Calculating the errors std::vector> error = alg.subtraction(y_hat, inputMiniBatches[i]); // Calculating the weight/bias gradients for layer 2 std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); // weights and bias updation for layer 2 _weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate / inputMiniBatches[i].size(), D2_1)); // Bias Updation for layer 2 _bias2 = alg.subtractMatrixRows(_bias2, alg.scalarMultiply(learning_rate, error)); //Calculating the weight/bias for layer 1 std::vector> D1_1 = alg.matmult(error, alg.transpose(_weights2)); std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true)); std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); // weight an bias updation for layer 1 _weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate / inputMiniBatches[i].size(), D1_3)); _bias1 = alg.subtractMatrixRows(_bias1, alg.scalarMultiply(learning_rate / inputMiniBatches[i].size(), D1_2)); y_hat = evaluatem(inputMiniBatches[i]); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, inputMiniBatches[i])); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(_weights1, _bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(_weights2, _bias2); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPAutoEncoder::score() { ERR_FAIL_COND_V(!_initialized, 0); MLPPUtilities util; return util.performance(_y_hat, _input_set); } void MLPPAutoEncoder::save(std::string fileName) { ERR_FAIL_COND(!_initialized); MLPPUtilities util; util.saveParameters(fileName, _weights1, _bias1, false, 1); util.saveParameters(fileName, _weights2, _bias2, true, 2); } MLPPAutoEncoder::MLPPAutoEncoder(std::vector> p_input_set, int pn_hidden) { _input_set = p_input_set; _n_hidden = pn_hidden; _n = _input_set.size(); _k = _input_set[0].size(); MLPPActivation avn; _y_hat.resize(_input_set.size()); _weights1 = MLPPUtilities::weightInitialization(_k, _n_hidden); _weights2 = MLPPUtilities::weightInitialization(_n_hidden, _k); _bias1 = MLPPUtilities::biasInitialization(_n_hidden); _bias2 = MLPPUtilities::biasInitialization(_k); _initialized = true; } MLPPAutoEncoder::MLPPAutoEncoder() { _initialized = false; } MLPPAutoEncoder::~MLPPAutoEncoder() { } real_t MLPPAutoEncoder::cost(std::vector> y_hat, std::vector> y) { class MLPPCost cost; return cost.MSE(y_hat, _input_set); } std::vector MLPPAutoEncoder::evaluatev(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(_weights1), x), _bias1); std::vector a2 = avn.sigmoid(z2); return alg.addition(alg.mat_vec_mult(alg.transpose(_weights2), a2), _bias2); } std::tuple, std::vector> MLPPAutoEncoder::propagatev(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(_weights1), x), _bias1); std::vector a2 = avn.sigmoid(z2); return { z2, a2 }; } std::vector> MLPPAutoEncoder::evaluatem(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; std::vector> z2 = alg.mat_vec_add(alg.matmult(X, _weights1), _bias1); std::vector> a2 = avn.sigmoid(z2); return alg.mat_vec_add(alg.matmult(a2, _weights2), _bias2); } std::tuple>, std::vector>> MLPPAutoEncoder::propagatem(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; std::vector> z2 = alg.mat_vec_add(alg.matmult(X, _weights1), _bias1); std::vector> a2 = avn.sigmoid(z2); return { z2, a2 }; } void MLPPAutoEncoder::forward_pass() { MLPPLinAlg alg; MLPPActivation avn; _z2 = alg.mat_vec_add(alg.matmult(_input_set, _weights1), _bias1); _a2 = avn.sigmoid(_z2); _y_hat = alg.mat_vec_add(alg.matmult(_a2, _weights2), _bias2); } void MLPPAutoEncoder::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPAutoEncoder::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPAutoEncoder::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPAutoEncoder::get_n_hidden); ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPAutoEncoder::set_n_hidden); ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden"); /* ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPAutoEncoder::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPAutoEncoder::model_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPAutoEncoder::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPAutoEncoder::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPAutoEncoder::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPAutoEncoder::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPAutoEncoder::save); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPAutoEncoder::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPAutoEncoder::initialize); */ }