#ifndef MLPP_UTILITIES_H #define MLPP_UTILITIES_H // // Utilities.hpp // // Created by Marc Melikyan on 1/16/21. // #include "core/containers/vector.h" #include "core/math/math_defs.h" #include "core/string/ustring.h" #include "core/variant/variant.h" #include "core/object/reference.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" #include #include #include class MLPPUtilities : public Reference { GDCLASS(MLPPUtilities, Reference); public: // Weight Init static std::vector weightInitialization(int n, std::string type = "Default"); static real_t biasInitialization(); static std::vector> weightInitialization(int n, int m, std::string type = "Default"); static std::vector biasInitialization(int n); enum WeightDistributionType { WEIGHT_DISTRIBUTION_TYPE_DEFAULT = 0, WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL, WEIGHT_DISTRIBUTION_TYPE_XAVIER_UNIFORM, WEIGHT_DISTRIBUTION_TYPE_HE_NORMAL, WEIGHT_DISTRIBUTION_TYPE_HE_UNIFORM, WEIGHT_DISTRIBUTION_TYPE_LE_CUN_NORMAL, WEIGHT_DISTRIBUTION_TYPE_LE_CUN_UNIFORM, WEIGHT_DISTRIBUTION_TYPE_UNIFORM, }; void weight_initializationv(Ref weights, WeightDistributionType type = WEIGHT_DISTRIBUTION_TYPE_DEFAULT); void weight_initializationm(Ref weights, WeightDistributionType type = WEIGHT_DISTRIBUTION_TYPE_DEFAULT); real_t bias_initializationr(); void bias_initializationv(Ref z); // Cost/Performance related Functions real_t performance(std::vector y_hat, std::vector y); real_t performance(std::vector> y_hat, std::vector> y); real_t performance_vec(const Ref &y_hat, const Ref &output_set); real_t performance_mat(const Ref &y_hat, const Ref &y); real_t performance_pool_int_array_vec(PoolIntArray y_hat, const Ref &output_set); // Parameter Saving Functions void saveParameters(std::string fileName, std::vector weights, real_t bias, bool app = 0, int layer = -1); void saveParameters(std::string fileName, std::vector weights, std::vector initial, real_t bias, bool app = 0, int layer = -1); void saveParameters(std::string fileName, std::vector> weights, std::vector bias, bool app = 0, int layer = -1); // Gradient Descent related static void UI(std::vector weights, real_t bias); static void UI(std::vector weights, std::vector initial, real_t bias); static void UI(std::vector>, std::vector bias); static void CostInfo(int epoch, real_t cost_prev, real_t Cost); static void cost_info(int epoch, real_t cost_prev, real_t cost); static std::vector>> createMiniBatches(std::vector> inputSet, int n_mini_batch); static std::tuple>>, std::vector>> createMiniBatches(std::vector> inputSet, std::vector outputSet, int n_mini_batch); static std::tuple>>, std::vector>>> createMiniBatches(std::vector> inputSet, std::vector> outputSet, int n_mini_batch); // F1 score, Precision/Recall, TP, FP, TN, FN, etc. std::tuple TF_PN(std::vector y_hat, std::vector y); //TF_PN = "True", "False", "Positive", "Negative" real_t recall(std::vector y_hat, std::vector y); real_t precision(std::vector y_hat, std::vector y); real_t accuracy(std::vector y_hat, std::vector y); real_t f1_score(std::vector y_hat, std::vector y); protected: static void _bind_methods(); }; VARIANT_ENUM_CAST(MLPPUtilities::WeightDistributionType); #endif /* Utilities_hpp */