// // SVC.cpp // // Created by Marc Melikyan on 10/2/20. // #include "svc.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include std::vector MLPPSVC::modelSetTest(std::vector> X) { return Evaluate(X); } real_t MLPPSVC::modelTest(std::vector x) { return Evaluate(x); } void MLPPSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet, weights, C); weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), cost.HingeLossDeriv(z, outputSet, C)))); weights = regularization.regWeights(weights, learning_rate / n, 0, "Ridge"); // Calculating the bias gradients bias += learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputSet, C)) / n; forwardPass(); // UI PORTION if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet, weights, C)); MLPPUtilities::UI(weights, bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPSVC::SGD(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; while (true) { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); //real_t y_hat = Evaluate(inputSet[outputIndex]); real_t z = propagate(inputSet[outputIndex]); cost_prev = Cost({ z }, { outputSet[outputIndex] }, weights, C); real_t costDeriv = cost.HingeLossDeriv(std::vector({ z }), std::vector({ outputSet[outputIndex] }), C)[0]; // Explicit conversion to avoid ambiguity with overloaded function. Error occured on Ubuntu. // Weight Updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * costDeriv, inputSet[outputIndex])); weights = regularization.regWeights(weights, learning_rate, 0, "Ridge"); // Bias updation bias -= learning_rate * costDeriv; //y_hat = Evaluate({ inputSet[outputIndex] }); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ z }, { outputSet[outputIndex] }, weights, C)); MLPPUtilities::UI(weights, bias); } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } void MLPPSVC::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = Evaluate(inputMiniBatches[i]); std::vector z = propagate(inputMiniBatches[i]); cost_prev = Cost(z, outputMiniBatches[i], weights, C); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C)))); weights = regularization.regWeights(weights, learning_rate / n, 0, "Ridge"); // Calculating the bias gradients bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n; forwardPass(); y_hat = Evaluate(inputMiniBatches[i]); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C)); MLPPUtilities::UI(weights, bias); } } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } real_t MLPPSVC::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } void MLPPSVC::save(std::string fileName) { MLPPUtilities util; util.saveParameters(fileName, weights, bias); } MLPPSVC::MLPPSVC(std::vector> p_inputSet, std::vector p_outputSet, real_t p_C) { inputSet = p_inputSet; outputSet = p_outputSet; n = inputSet.size(); k = inputSet[0].size(); C = p_C; y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k); bias = MLPPUtilities::biasInitialization(); } real_t MLPPSVC::Cost(std::vector z, std::vector y, std::vector weights, real_t C) { class MLPPCost cost; return cost.HingeLoss(z, y, weights, C); } std::vector MLPPSVC::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return avn.sign(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); } std::vector MLPPSVC::propagate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); } real_t MLPPSVC::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return avn.sign(alg.dot(weights, x) + bias); } real_t MLPPSVC::propagate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return alg.dot(weights, x) + bias; } // sign ( wTx + b ) void MLPPSVC::forwardPass() { MLPPActivation avn; z = propagate(inputSet); y_hat = avn.sign(z); }