// // MultinomialNB.cpp // // Created by Marc Melikyan on 1/17/21. // #include "multinomial_nb.h" #include "../lin_alg/lin_alg.h" #include "../utilities/utilities.h" #include #include #include /* Ref MLPPMultinomialNB::get_input_set() { return _input_set; } void MLPPMultinomialNB::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } Ref MLPPMultinomialNB::get_output_set() { return _output_set; } void MLPPMultinomialNB::set_output_set(const Ref &val) { _output_set = val; _initialized = false; } real_t MLPPMultinomialNB::get_class_num() { return _class_num; } void MLPPMultinomialNB::set_class_num(const real_t val) { _class_num = val; _initialized = false; } */ std::vector MLPPMultinomialNB::model_set_test(std::vector> X) { ERR_FAIL_COND_V(!_initialized, std::vector()); std::vector y_hat; for (uint32_t i = 0; i < X.size(); i++) { y_hat.push_back(model_test(X[i])); } return y_hat; } real_t MLPPMultinomialNB::model_test(std::vector x) { ERR_FAIL_COND_V(!_initialized, 0); real_t score[_class_num]; compute_theta(); for (uint32_t j = 0; j < x.size(); j++) { for (uint32_t k = 0; k < _vocab.size(); k++) { if (x[j] == _vocab[k]) { for (int p = _class_num - 1; p >= 0; p--) { score[p] += std::log(_theta[p][_vocab[k]]); } } } } for (uint32_t i = 0; i < _priors.size(); i++) { score[i] += std::log(_priors[i]); } return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))); } real_t MLPPMultinomialNB::score() { ERR_FAIL_COND_V(!_initialized, 0); MLPPUtilities util; return util.performance(_y_hat, _output_set); } bool MLPPMultinomialNB::is_initialized() { return _initialized; } void MLPPMultinomialNB::initialize() { if (_initialized) { return; } //ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); _initialized = true; } MLPPMultinomialNB::MLPPMultinomialNB(std::vector> p_input_set, std::vector p_output_set, int pclass_num) { _input_set = p_input_set; _output_set = p_output_set; _class_num = pclass_num; _y_hat.resize(_output_set.size()); _initialized = true; evaluate(); } MLPPMultinomialNB::MLPPMultinomialNB() { _initialized = false; } MLPPMultinomialNB::~MLPPMultinomialNB() { } void MLPPMultinomialNB::compute_theta() { // Resizing theta for the sake of ease & proper access of the elements. _theta.resize(_class_num); // Setting all values in the hasmap by default to 0. for (int i = _class_num - 1; i >= 0; i--) { for (uint32_t j = 0; j < _vocab.size(); j++) { _theta[i][_vocab[j]] = 0; } } for (uint32_t i = 0; i < _input_set.size(); i++) { for (uint32_t j = 0; j < _input_set[0].size(); j++) { _theta[_output_set[i]][_input_set[i][j]]++; } } for (uint32_t i = 0; i < _theta.size(); i++) { for (uint32_t j = 0; j < _theta[i].size(); j++) { _theta[i][j] /= _priors[i] * _y_hat.size(); } } } void MLPPMultinomialNB::evaluate() { MLPPLinAlg alg; for (uint32_t i = 0; i < _output_set.size(); i++) { // Pr(B | A) * Pr(A) real_t score[_class_num]; // Easy computation of priors, i.e. Pr(C_k) _priors.resize(_class_num); for (uint32_t ii = 0; ii < _output_set.size(); ii++) { _priors[int(_output_set[ii])]++; } _priors = alg.scalarMultiply(real_t(1) / real_t(_output_set.size()), _priors); // Evaluating Theta... compute_theta(); for (uint32_t j = 0; j < _input_set.size(); j++) { for (uint32_t k = 0; k < _vocab.size(); k++) { if (_input_set[i][j] == _vocab[k]) { for (int p = _class_num - 1; p >= 0; p--) { score[p] += std::log(_theta[i][_vocab[k]]); } } } } for (uint32_t ii = 0; ii < _priors.size(); ii++) { score[ii] += std::log(_priors[ii]); score[ii] = exp(score[ii]); } for (int ii = 0; ii < 2; ii++) { std::cout << score[ii] << std::endl; } // Assigning the traning example's y_hat to a class _y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))); } } void MLPPMultinomialNB::_bind_methods() { /* ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMultinomialNB::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMultinomialNB::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMultinomialNB::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMultinomialNB::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_c"), &MLPPMultinomialNB::get_c); ClassDB::bind_method(D_METHOD("set_c", "val"), &MLPPMultinomialNB::set_c); ADD_PROPERTY(PropertyInfo(Variant::REAL, "c"), "set_c", "get_c"); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPMultinomialNB::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPMultinomialNB::model_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPMultinomialNB::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPMultinomialNB::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPMultinomialNB::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPMultinomialNB::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPMultinomialNB::save); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPMultinomialNB::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPMultinomialNB::initialize); */ }