// // SoftmaxReg.cpp // // Created by Marc Melikyan on 10/2/20. // #include "softmax_reg.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include Ref MLPPSoftmaxReg::get_input_set() const { return _input_set; } void MLPPSoftmaxReg::set_input_set(const Ref &val) { _input_set = val; } Ref MLPPSoftmaxReg::get_output_set() const { return _output_set; } void MLPPSoftmaxReg::set_output_set(const Ref &val) { _output_set = val; } MLPPReg::RegularizationType MLPPSoftmaxReg::get_reg() const { return _reg; } void MLPPSoftmaxReg::set_reg(const MLPPReg::RegularizationType val) { _reg = val; } real_t MLPPSoftmaxReg::get_lambda() const { return _lambda; } void MLPPSoftmaxReg::set_lambda(const real_t val) { _lambda = val; } real_t MLPPSoftmaxReg::get_alpha() const { return _alpha; } void MLPPSoftmaxReg::set_alpha(const real_t val) { _alpha = val; } Ref MLPPSoftmaxReg::data_y_hat_get() const { return _y_hat; } void MLPPSoftmaxReg::data_y_hat_set(const Ref &val) { _y_hat = val; } Ref MLPPSoftmaxReg::data_weights_get() const { return _weights; } void MLPPSoftmaxReg::data_weights_set(const Ref &val) { _weights = val; } Ref MLPPSoftmaxReg::data_bias_get() const { return _bias; } void MLPPSoftmaxReg::data_bias_set(const Ref &val) { _bias = val; } Ref MLPPSoftmaxReg::model_test(const Ref &x) { ERR_FAIL_COND_V(!_input_set.is_valid() || !_output_set.is_valid(), Ref()); ERR_FAIL_COND_V(needs_init(), Ref()); return evaluatev(x); } Ref MLPPSoftmaxReg::model_set_test(const Ref &X) { ERR_FAIL_COND_V(!_input_set.is_valid() || !_output_set.is_valid(), Ref()); ERR_FAIL_COND_V(needs_init(), Ref()); return evaluatem(X); } void MLPPSoftmaxReg::train_gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); ERR_FAIL_COND(needs_init()); MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); Ref error = _y_hat->subn(_output_set); //Calculating the weight gradients Ref w_gradient = _input_set->transposen()->multn(error); //Weight updation _weights->sub(w_gradient->scalar_multiplyn(learning_rate)); _weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients //real_t b_gradient = alg.sum_elements(error); // Bias Updation _bias->subtract_matrix_rows(error->scalar_multiplyn(learning_rate)); forward_pass(); // UI PORTION if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); MLPPUtilities::print_ui_mb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPSoftmaxReg::train_sgd(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); ERR_FAIL_COND(needs_init()); MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; int n = _input_set->size().y; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref y_hat_matrix_tmp; y_hat_matrix_tmp.instance(); //y_hat_matrix_tmp->resize(Size2i(_input_set->size().y, 1)); Ref output_set_row_tmp; output_set_row_tmp.instance(); output_set_row_tmp->resize(_output_set->size().x); Ref output_set_row_matrix_tmp; output_set_row_matrix_tmp.instance(); output_set_row_matrix_tmp->resize(Size2i(_output_set->size().x, 1)); while (true) { real_t output_index = distribution(generator); _input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp); Ref y_hat = evaluatev(input_set_row_tmp); y_hat_matrix_tmp->resize(Size2i(y_hat->size(), 1)); y_hat_matrix_tmp->row_set_mlpp_vector(0, y_hat); _output_set->row_get_into_mlpp_vector(output_index, output_set_row_tmp); output_set_row_matrix_tmp->row_set_mlpp_vector(0, output_set_row_tmp); cost_prev = cost(y_hat_matrix_tmp, output_set_row_matrix_tmp); // Calculating the weight gradients Ref w_gradient = input_set_row_tmp->outer_product(y_hat->subn(output_set_row_tmp)); // Weight Updation _weights->sub(w_gradient->scalar_multiplyn(learning_rate)); _weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients Ref b_gradient = y_hat->subn(output_set_row_tmp); // Bias updation _bias->sub(b_gradient->scalar_multiplyn(learning_rate)); y_hat = evaluatev(output_set_row_tmp); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_matrix_tmp, output_set_row_matrix_tmp)); MLPPUtilities::print_ui_mb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPSoftmaxReg::train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); ERR_FAIL_COND(needs_init()); MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; int n = _input_set->size().y; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; MLPPUtilities::CreateMiniBatchMMBatch batches = MLPPUtilities::create_mini_batchesmm(_input_set, _output_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_inputs = batches.input_sets[i]; Ref current_outputs = batches.output_sets[i]; Ref y_hat = evaluatem(current_inputs); cost_prev = cost(y_hat, current_outputs); Ref error = y_hat->subn(current_outputs); // Calculating the weight gradients Ref w_gradient = current_inputs->transposen()->multn(error); //Weight updation _weights->sub(w_gradient->scalar_multiplyn(learning_rate)); _weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias->subtract_matrix_rows(error->scalar_multiplyn(learning_rate)); y_hat = evaluatem(current_inputs); if (ui) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, current_outputs)); MLPPUtilities::print_ui_mb(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPSoftmaxReg::score() { ERR_FAIL_COND_V(!_input_set.is_valid() || !_output_set.is_valid(), 0); ERR_FAIL_COND_V(needs_init(), 0); MLPPUtilities util; return util.performance_mat(_y_hat, _output_set); } bool MLPPSoftmaxReg::needs_init() const { if (!_input_set.is_valid()) { return true; } if (!_output_set.is_valid()) { return true; } int n = _input_set->size().y; int k = _input_set->size().x; int n_class = _output_set->size().x; if (_y_hat->size().y != n) { return true; } if (_weights->size() != Size2i(n_class, k)) { return true; } if (_bias->size() != n_class) { return true; } return false; } void MLPPSoftmaxReg::initialize() { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); int n = _input_set->size().y; int k = _input_set->size().x; int n_class = _output_set->size().x; _y_hat->resize(Size2i(0, n)); MLPPUtilities util; _weights->resize(Size2i(n_class, k)); _bias->resize(n_class); util.weight_initializationm(_weights); util.bias_initializationv(_bias); } MLPPSoftmaxReg::MLPPSoftmaxReg(const Ref &p_input_set, const Ref &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { _input_set = p_input_set; _output_set = p_output_set; _reg = p_reg; _lambda = p_lambda; _alpha = p_alpha; _y_hat.instance(); _weights.instance(); _bias.instance(); initialize(); } MLPPSoftmaxReg::MLPPSoftmaxReg() { // Regularization Params _reg = MLPPReg::REGULARIZATION_TYPE_NONE; _lambda = 0.5; _alpha = 0.5; /* This is the controlling param for Elastic Net*/ _y_hat.instance(); _weights.instance(); _bias.instance(); } MLPPSoftmaxReg::~MLPPSoftmaxReg() { } real_t MLPPSoftmaxReg::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; class MLPPCost cost; return cost.cross_entropym(y_hat, y) + regularization.reg_termm(_weights, _lambda, _alpha, _reg); } Ref MLPPSoftmaxReg::evaluatev(const Ref &x) { MLPPActivation avn; return avn.softmax_normv(_bias->addn(_weights->transposen()->mult_vec(x))); } Ref MLPPSoftmaxReg::evaluatem(const Ref &X) { MLPPActivation avn; return avn.softmax_normm(X->multn(_weights)->add_vecn(_bias)); } // softmax ( wTx + b ) void MLPPSoftmaxReg::forward_pass() { MLPPActivation avn; _y_hat = avn.softmax_normm(_input_set->multn(_weights)->add_vecn(_bias)); } void MLPPSoftmaxReg::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPSoftmaxReg::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPSoftmaxReg::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPSoftmaxReg::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPSoftmaxReg::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPSoftmaxReg::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPSoftmaxReg::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPSoftmaxReg::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPSoftmaxReg::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPSoftmaxReg::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPSoftmaxReg::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("data_y_hat_get"), &MLPPSoftmaxReg::data_y_hat_get); ClassDB::bind_method(D_METHOD("data_y_hat_set", "val"), &MLPPSoftmaxReg::data_y_hat_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_y_hat", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "data_y_hat_set", "data_y_hat_get"); ClassDB::bind_method(D_METHOD("data_weights_get"), &MLPPSoftmaxReg::data_weights_get); ClassDB::bind_method(D_METHOD("data_weights_set", "val"), &MLPPSoftmaxReg::data_weights_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "data_weights_set", "data_weights_get"); ClassDB::bind_method(D_METHOD("data_bias_get"), &MLPPSoftmaxReg::data_bias_get); ClassDB::bind_method(D_METHOD("data_bias_set", "val"), &MLPPSoftmaxReg::data_bias_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_bias", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_bias_set", "data_bias_get"); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPSoftmaxReg::model_test); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPSoftmaxReg::model_set_test); ClassDB::bind_method(D_METHOD("train_gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxReg::train_gradient_descent, false); ClassDB::bind_method(D_METHOD("train_sgd", "learning_rate", "max_epoch", "ui"), &MLPPSoftmaxReg::train_sgd, false); ClassDB::bind_method(D_METHOD("train_mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPSoftmaxReg::train_mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPSoftmaxReg::score); ClassDB::bind_method(D_METHOD("needs_init"), &MLPPSoftmaxReg::needs_init); ClassDB::bind_method(D_METHOD("initialize"), &MLPPSoftmaxReg::initialize); }