// // SoftmaxReg.cpp // // Created by Marc Melikyan on 10/2/20. // #include "softmax_reg_old.h" #include "../activation/activation_old.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include MLPPSoftmaxRegOld::MLPPSoftmaxRegOld(std::vector> inputSet, std::vector> outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_class(outputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k, n_class); bias = MLPPUtilities::biasInitialization(n_class); } std::vector MLPPSoftmaxRegOld::modelTest(std::vector x) { return Evaluate(x); } std::vector> MLPPSoftmaxRegOld::modelSetTest(std::vector> X) { return Evaluate(X); } void MLPPSoftmaxRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); std::vector> error = alg.subtraction(y_hat, outputSet); //Calculating the weight gradients std::vector> w_gradient = alg.matmult(alg.transpose(inputSet), error); //Weight updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient)); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients //real_t b_gradient = alg.sum_elements(error); // Bias Updation bias = alg.subtractMatrixRows(bias, alg.scalarMultiply(learning_rate, error)); forwardPass(); // UI PORTION if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); MLPPUtilities::UI(weights, bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPSoftmaxRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; while (true) { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); real_t outputIndex = distribution(generator); std::vector y_hat = Evaluate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); // Calculating the weight gradients std::vector> w_gradient = alg.outerProduct(inputSet[outputIndex], alg.subtraction(y_hat, outputSet[outputIndex])); // Weight Updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient)); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients std::vector b_gradient = alg.subtraction(y_hat, outputSet[outputIndex]); // Bias updation bias = alg.subtraction(bias, alg.scalarMultiply(learning_rate, b_gradient)); //y_hat = Evaluate({ inputSet[outputIndex] }); y_hat = Evaluate(inputSet[outputIndex]); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] })); MLPPUtilities::UI(weights, bias); } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } void MLPPSoftmaxRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector> y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); std::vector> error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients std::vector> w_gradient = alg.matmult(alg.transpose(inputMiniBatches[i]), error); //Weight updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient)); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients bias = alg.subtractMatrixRows(bias, alg.scalarMultiply(learning_rate, error)); y_hat = Evaluate(inputMiniBatches[i]); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i])); MLPPUtilities::UI(weights, bias); } } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } real_t MLPPSoftmaxRegOld::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } void MLPPSoftmaxRegOld::save(std::string fileName) { MLPPUtilities util; util.saveParameters(fileName, weights, bias); } real_t MLPPSoftmaxRegOld::Cost(std::vector> y_hat, std::vector> y) { MLPPReg regularization; class MLPPCost cost; return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } std::vector MLPPSoftmaxRegOld::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivationOld avn; return avn.softmax(alg.addition(bias, alg.mat_vec_mult(alg.transpose(weights), x))); } std::vector> MLPPSoftmaxRegOld::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivationOld avn; return avn.softmax(alg.mat_vec_add(alg.matmult(X, weights), bias)); } // softmax ( wTx + b ) void MLPPSoftmaxRegOld::forwardPass() { MLPPLinAlg alg; MLPPActivationOld avn; y_hat = avn.softmax(alg.mat_vec_add(alg.matmult(inputSet, weights), bias)); }