// // AutoEncoder.cpp // // Created by Marc Melikyan on 11/4/20. // #include "auto_encoder.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../utilities/utilities.h" #include "core/log/logger.h" #include //UDPATE Ref MLPPAutoEncoder::get_input_set() { return _input_set; } void MLPPAutoEncoder::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } int MLPPAutoEncoder::get_n_hidden() { return _n_hidden; } void MLPPAutoEncoder::set_n_hidden(const int val) { _n_hidden = val; _initialized = false; } Ref MLPPAutoEncoder::model_set_test(const Ref &X) { ERR_FAIL_COND_V(!_initialized, Ref()); return evaluatem(X); } Ref MLPPAutoEncoder::model_test(const Ref &x) { ERR_FAIL_COND_V(!_initialized, Ref()); return evaluatev(x); } void MLPPAutoEncoder::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _input_set); // Calculating the errors Ref error = alg.subtractionnm(_y_hat, _input_set); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = alg.matmultnm(alg.transposenm(_a2), error); // weights and bias updation for layer 2 _weights2 = alg.subtractionnm(_weights2, alg.scalar_multiplynm(learning_rate / _n, D2_1)); // Calculating the bias gradients for layer 2 _bias2 = alg.subtract_matrix_rows(_bias2, alg.scalar_multiplynm(learning_rate, error)); //Calculating the weight/bias for layer 1 Ref D1_1 = alg.matmultnm(error, alg.transposenm(_weights2)); Ref D1_2 = alg.hadamard_productnm(D1_1, avn.sigmoid_derivm(_z2)); Ref D1_3 = alg.matmultnm(alg.transposenm(_input_set), D1_2); // weight an bias updation for layer 1 _weights1 = alg.subtractionnm(_weights1, alg.scalar_multiplynm(learning_rate / _n, D1_3)); _bias1 = alg.subtract_matrix_rows(_bias1, alg.scalar_multiplynm(learning_rate / _n, D1_2)); forward_pass(); // UI PORTION if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _input_set)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPAutoEncoder::sgd(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref input_set_mat_tmp; input_set_mat_tmp.instance(); input_set_mat_tmp->resize(Size2i(_input_set->size().x, 1)); Ref y_hat_mat_tmp; y_hat_mat_tmp.instance(); y_hat_mat_tmp->resize(Size2i(_bias2->size(), 1)); while (true) { int output_index = distribution(generator); _input_set->get_row_into_mlpp_vector(output_index, input_set_row_tmp); input_set_mat_tmp->set_row_mlpp_vector(0, input_set_row_tmp); Ref y_hat = evaluatev(input_set_row_tmp); y_hat_mat_tmp->set_row_mlpp_vector(0, y_hat); PropagateVResult prop_res = propagatev(input_set_row_tmp); cost_prev = cost(y_hat_mat_tmp, input_set_mat_tmp); Ref error = alg.subtractionnv(y_hat, input_set_row_tmp); // Weight updation for layer 2 Ref D2_1 = alg.outer_product(error, prop_res.a2); _weights2 = alg.subtractionnm(_weights2, alg.scalar_multiplynm(learning_rate, alg.transposenm(D2_1))); // Bias updation for layer 2 _bias2 = alg.subtractionnv(_bias2, alg.scalar_multiplynv(learning_rate, error)); // Weight updation for layer 1 Ref D1_1 = alg.mat_vec_multv(_weights2, error); Ref D1_2 = alg.hadamard_productnv(D1_1, avn.sigmoid_derivv(prop_res.z2)); Ref D1_3 = alg.outer_product(input_set_row_tmp, D1_2); _weights1 = alg.subtractionnm(_weights1, alg.scalar_multiplynm(learning_rate, D1_3)); // Bias updation for layer 1 _bias1 = alg.subtractionnv(_bias1, alg.scalar_multiplynv(learning_rate, D1_2)); y_hat = evaluatev(input_set_row_tmp); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_mat_tmp, input_set_mat_tmp)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPAutoEncoder::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; Vector> batches = MLPPUtilities::create_mini_batchesm(_input_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_batch = batches[i]; Ref y_hat = evaluatem(current_batch); PropagateMResult prop_res = propagatem(current_batch); cost_prev = cost(y_hat, current_batch); // Calculating the errors Ref error = alg.subtractionnm(y_hat, current_batch); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = alg.matmultnm(alg.transposenm(prop_res.a2), error); // weights and bias updation for layer 2 _weights2 = alg.subtractionnm(_weights2, alg.scalar_multiplynm(learning_rate / current_batch->size().y, D2_1)); // Bias Updation for layer 2 _bias2 = alg.subtract_matrix_rows(_bias2, alg.scalar_multiplynm(learning_rate, error)); //Calculating the weight/bias for layer 1 Ref D1_1 = alg.matmultnm(error, alg.transposenm(_weights2)); Ref D1_2 = alg.hadamard_productnm(D1_1, avn.sigmoid_derivm(prop_res.z2)); Ref D1_3 = alg.matmultnm(alg.transposenm(current_batch), D1_2); // weight an bias updation for layer 1 _weights1 = alg.subtractionnm(_weights1, alg.scalar_multiplynm(learning_rate / current_batch->size().x, D1_3)); _bias1 = alg.subtract_matrix_rows(_bias1, alg.scalar_multiplynm(learning_rate / current_batch->size().x, D1_2)); y_hat = evaluatem(current_batch); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_batch)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_mb(_weights2, _bias2); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPAutoEncoder::score() { ERR_FAIL_COND_V(!_initialized, 0); MLPPUtilities util; return util.performance_mat(_y_hat, _input_set); } void MLPPAutoEncoder::save(const String &file_name) { ERR_FAIL_COND(!_initialized); //MLPPUtilities util; //util.saveParameters(fileName, _weights1, _bias1, false, 1); //util.saveParameters(fileName, _weights2, _bias2, true, 2); } MLPPAutoEncoder::MLPPAutoEncoder(const Ref &p_input_set, int p_n_hidden) { _input_set = p_input_set; _n_hidden = p_n_hidden; _n = _input_set->size().y; _k = _input_set->size().x; _y_hat.instance(); _y_hat->resize(_input_set->size()); MLPPUtilities utilities; _weights1.instance(); _weights1->resize(Size2i(_n_hidden, _k)); utilities.weight_initializationm(_weights1); _weights2.instance(); _weights2->resize(Size2i(_k, _n_hidden)); utilities.weight_initializationm(_weights2); _bias1.instance(); _bias1->resize(_n_hidden); utilities.bias_initializationv(_bias1); _bias2.instance(); _bias2->resize(_k); utilities.bias_initializationv(_bias2); _initialized = true; } MLPPAutoEncoder::MLPPAutoEncoder() { _initialized = false; } MLPPAutoEncoder::~MLPPAutoEncoder() { } real_t MLPPAutoEncoder::cost(const Ref &y_hat, const Ref &y) { MLPPCost mlpp_cost; return mlpp_cost.msem(y_hat, _input_set); } Ref MLPPAutoEncoder::evaluatev(const Ref &x) { MLPPLinAlg alg; MLPPActivation avn; Ref z2 = alg.additionnv(alg.mat_vec_multv(alg.transposenm(_weights1), x), _bias1); Ref a2 = avn.sigmoid_normv(z2); return alg.additionnv(alg.mat_vec_multv(alg.transposenm(_weights2), a2), _bias2); } MLPPAutoEncoder::PropagateVResult MLPPAutoEncoder::propagatev(const Ref &x) { MLPPLinAlg alg; MLPPActivation avn; PropagateVResult res; res.z2 = alg.additionnv(alg.mat_vec_multv(alg.transposenm(_weights1), x), _bias1); res.a2 = avn.sigmoid_normv(res.z2); return res; } Ref MLPPAutoEncoder::evaluatem(const Ref &X) { MLPPLinAlg alg; MLPPActivation avn; Ref z2 = alg.mat_vec_addv(alg.matmultnm(X, _weights1), _bias1); Ref a2 = avn.sigmoid_normm(z2); return alg.mat_vec_addv(alg.matmultnm(a2, _weights2), _bias2); } MLPPAutoEncoder::PropagateMResult MLPPAutoEncoder::propagatem(const Ref &X) { MLPPLinAlg alg; MLPPActivation avn; PropagateMResult res; res.z2 = alg.mat_vec_addv(alg.matmultnm(X, _weights1), _bias1); res.a2 = avn.sigmoid_normm(res.z2); return res; } void MLPPAutoEncoder::forward_pass() { MLPPLinAlg alg; MLPPActivation avn; _z2 = alg.mat_vec_addv(alg.matmultnm(_input_set, _weights1), _bias1); _a2 = avn.sigmoid_normm(_z2); _y_hat = alg.mat_vec_addv(alg.matmultnm(_a2, _weights2), _bias2); } void MLPPAutoEncoder::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPAutoEncoder::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPAutoEncoder::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPAutoEncoder::get_n_hidden); ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPAutoEncoder::set_n_hidden); ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden"); /* ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPAutoEncoder::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPAutoEncoder::model_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPAutoEncoder::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPAutoEncoder::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPAutoEncoder::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPAutoEncoder::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPAutoEncoder::save); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPAutoEncoder::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPAutoEncoder::initialize); */ }