// // MLP.cpp // // Created by Marc Melikyan on 11/4/20. // #include "mlp.h" #include "core/log/logger.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include Ref MLPPMLP::get_input_set() { return _input_set; } void MLPPMLP::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } Ref MLPPMLP::get_output_set() { return _output_set; } void MLPPMLP::set_output_set(const Ref &val) { _output_set = val; _initialized = false; } int MLPPMLP::get_n_hidden() { return _n_hidden; } void MLPPMLP::set_n_hidden(const int val) { _n_hidden = val; _initialized = false; } real_t MLPPMLP::get_lambda() { return _lambda; } void MLPPMLP::set_lambda(const real_t val) { _lambda = val; _initialized = false; } real_t MLPPMLP::get_alpha() { return _alpha; } void MLPPMLP::set_alpha(const real_t val) { _alpha = val; _initialized = false; } MLPPReg::RegularizationType MLPPMLP::get_reg() { return _reg; } void MLPPMLP::set_reg(const MLPPReg::RegularizationType val) { _reg = val; _initialized = false; } Ref MLPPMLP::model_set_test(const Ref &X) { return evaluatem(X); } real_t MLPPMLP::model_test(const Ref &x) { return evaluatev(x); } void MLPPMLP::gradient_descent(real_t learning_rate, int max_epoch, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; _y_hat->fill(0); forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); // Calculating the errors Ref error = alg.subtractionnv(_y_hat, _output_set); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = alg.mat_vec_multv(alg.transposem(_a2), error); // weights and bias updation for layer 2 _weights2->set_from_mlpp_vector(alg.subtractionnv(_weights2, alg.scalar_multiplynv(learning_rate / static_cast(_n), D2_1))); _weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg)); _bias2 -= learning_rate * alg.sum_elementsv(error) / static_cast(_n); // Calculating the weight/bias for layer 1 Ref D1_1 = alg.outer_product(error, _weights2); Ref D1_2 = alg.hadamard_productm(alg.transposem(D1_1), avn.sigmoid_derivm(_z2)); Ref D1_3 = alg.matmultm(alg.transposem(_input_set), D1_2); // weight an bias updation for layer 1 _weights1->set_from_mlpp_matrix(alg.subtractionm(_weights1, alg.scalar_multiplym(learning_rate / _n, D1_3))); _weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg)); _bias1->set_from_mlpp_vector(alg.subtract_matrix_rows(_bias1, alg.scalar_multiplym(learning_rate / _n, D1_2))); forward_pass(); // UI PORTION if (UI) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_vb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPMLP::sgd(real_t learning_rate, int max_epoch, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(_input_set->size().x); Ref output_set_row_tmp; output_set_row_tmp.instance(); output_set_row_tmp->resize(1); Ref y_hat_row_tmp; y_hat_row_tmp.instance(); y_hat_row_tmp->resize(1); Ref lz2; lz2.instance(); Ref la2; la2.instance(); while (true) { int output_Index = distribution(generator); _input_set->get_row_into_mlpp_vector(output_Index, input_set_row_tmp); real_t output_element = _output_set->get_element(output_Index); output_set_row_tmp->set_element(0, output_element); real_t ly_hat = evaluatev(input_set_row_tmp); y_hat_row_tmp->set_element(0, ly_hat); propagatev(input_set_row_tmp, lz2, la2); cost_prev = cost(y_hat_row_tmp, output_set_row_tmp); real_t error = ly_hat - output_element; // Weight updation for layer 2 Ref D2_1 = alg.scalar_multiplynv(error, la2); _weights2->set_from_mlpp_vector(alg.subtractionnv(_weights2, alg.scalar_multiplynv(learning_rate, D2_1))); _weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg)); // Bias updation for layer 2 _bias2 -= learning_rate * error; // Weight updation for layer 1 Ref D1_1 = alg.scalar_multiplynv(error, _weights2); Ref D1_2 = alg.hadamard_productnv(D1_1, avn.sigmoid_derivv(lz2)); Ref D1_3 = alg.outer_product(input_set_row_tmp, D1_2); _weights1->set_from_mlpp_matrix(alg.subtractionm(_weights1, alg.scalar_multiplym(learning_rate, D1_3))); _weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg)); // Bias updation for layer 1 _bias1->set_from_mlpp_vector(alg.subtractionnv(_bias1, alg.scalar_multiplynv(learning_rate, D1_2))); ly_hat = evaluatev(input_set_row_tmp); if (UI) { MLPPUtilities::cost_info(epoch, cost_prev, cost_prev); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_vb(_weights2, _bias2); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPMLP::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; Ref lz2; lz2.instance(); Ref la2; la2.instance(); // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_input = batches.input_sets[i]; Ref current_output = batches.output_sets[i]; Ref ly_hat = evaluatem(current_input); propagatem(current_input, lz2, la2); cost_prev = cost(ly_hat, current_output); // Calculating the errors Ref error = alg.subtractionnv(ly_hat, current_output); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = alg.mat_vec_multv(alg.transposem(la2), error); real_t lr_d_cos = learning_rate / static_cast(current_output->size()); // weights and bias updation for layser 2 _weights2->set_from_mlpp_vector(alg.subtractionnv(_weights2, alg.scalar_multiplynv(lr_d_cos, D2_1))); _weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg)); // Calculating the bias gradients for layer 2 real_t b_gradient = alg.sum_elementsv(error); // Bias Updation for layer 2 _bias2 -= learning_rate * b_gradient / current_output->size(); //Calculating the weight/bias for layer 1 Ref D1_1 = alg.outer_product(error, _weights2); Ref D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(lz2)); Ref D1_3 = alg.matmultm(alg.transposem(current_input), D1_2); // weight an bias updation for layer 1 _weights1->set_from_mlpp_matrix(alg.subtractionm(_weights1, alg.scalar_multiplym(lr_d_cos, D1_3))); _weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg)); _bias1->set_from_mlpp_vector(alg.subtract_matrix_rows(_bias1, alg.scalar_multiplym(lr_d_cos, D1_2))); _y_hat = evaluatem(current_input); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(ly_hat, current_output)); PLOG_MSG("Layer 1:"); MLPPUtilities::print_ui_mb(_weights1, _bias1); PLOG_MSG("Layer 2:"); MLPPUtilities::print_ui_vb(_weights2, _bias2); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPMLP::score() { MLPPUtilities util; return util.performance_vec(_y_hat, _output_set); } void MLPPMLP::save(const String &fileName) { ERR_FAIL_COND(!_initialized); MLPPUtilities util; //util.saveParameters(fileName, weights1, bias1, 0, 1); //util.saveParameters(fileName, weights2, bias2, 1, 2); } bool MLPPMLP::is_initialized() { return _initialized; } void MLPPMLP::initialize() { if (_initialized) { return; } ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid() || _n_hidden == 0); _n = _input_set->size().y; _k = _input_set->size().x; MLPPActivation avn; _y_hat->resize(_n); MLPPUtilities util; _weights1->resize(Size2i(_k, _n_hidden)); _weights2->resize(_n_hidden); _bias1->resize(_n_hidden); util.weight_initializationm(_weights1); util.weight_initializationv(_weights2); util.bias_initializationv(_bias1); _bias2 = util.bias_initializationr(); _z2.instance(); _a2.instance(); _initialized = true; } real_t MLPPMLP::cost(const Ref &p_y_hat, const Ref &p_y) { MLPPReg regularization; MLPPCost mlpp_cost; return mlpp_cost.log_lossv(p_y_hat, p_y) + regularization.reg_termv(_weights2, _lambda, _alpha, _reg) + regularization.reg_termm(_weights1, _lambda, _alpha, _reg); } Ref MLPPMLP::evaluatem(const Ref &X) { MLPPLinAlg alg; MLPPActivation avn; Ref pz2 = alg.mat_vec_addv(alg.matmultm(X, _weights1), _bias1); Ref pa2 = avn.sigmoid_normm(pz2); return avn.sigmoid_normv(alg.scalar_addnv(_bias2, alg.mat_vec_multv(pa2, _weights2))); } void MLPPMLP::propagatem(const Ref &X, Ref z2_out, Ref a2_out) { MLPPLinAlg alg; MLPPActivation avn; z2_out->set_from_mlpp_matrix(alg.mat_vec_addv(alg.matmultm(X, _weights1), _bias1)); a2_out->set_from_mlpp_matrix(avn.sigmoid_normm(z2_out)); } real_t MLPPMLP::evaluatev(const Ref &x) { MLPPLinAlg alg; MLPPActivation avn; Ref pz2 = alg.additionnv(alg.mat_vec_multv(alg.transposem(_weights1), x), _bias1); Ref pa2 = avn.sigmoid_normv(pz2); return avn.sigmoid_normr(alg.dotv(_weights2, pa2) + _bias2); } void MLPPMLP::propagatev(const Ref &x, Ref z2_out, Ref a2_out) { MLPPLinAlg alg; MLPPActivation avn; z2_out->set_from_mlpp_vector(alg.additionnv(alg.mat_vec_multv(alg.transposem(_weights1), x), _bias1)); a2_out->set_from_mlpp_vector(avn.sigmoid_normv(z2_out)); } void MLPPMLP::forward_pass() { MLPPLinAlg alg; MLPPActivation avn; _z2->set_from_mlpp_matrix(alg.mat_vec_addv(alg.matmultm(_input_set, _weights1), _bias1)); _a2->set_from_mlpp_matrix(avn.sigmoid_normm(_z2)); _y_hat->set_from_mlpp_vector(avn.sigmoid_normv(alg.scalar_addnv(_bias2, alg.mat_vec_multv(_a2, _weights2)))); } MLPPMLP::MLPPMLP(const Ref &p_input_set, const Ref &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { _input_set = p_input_set; _output_set = p_output_set; _y_hat.instance(); _n_hidden = p_n_hidden; _n = _input_set->size().y; _k = _input_set->size().x; _reg = p_reg; _lambda = p_lambda; _alpha = p_alpha; MLPPActivation avn; _y_hat->resize(_n); MLPPUtilities util; _weights1.instance(); _weights1->resize(Size2i(_k, _n_hidden)); _weights2.instance(); _weights2->resize(_n_hidden); _bias1.instance(); _bias1->resize(_n_hidden); util.weight_initializationm(_weights1); util.weight_initializationv(_weights2); util.bias_initializationv(_bias1); _bias2 = util.bias_initializationr(); _z2.instance(); _a2.instance(); _initialized = true; } MLPPMLP::MLPPMLP() { _y_hat.instance(); _n_hidden = 0; _n = 0; _k = 0; _reg = MLPPReg::REGULARIZATION_TYPE_NONE; _lambda = 0.5; _alpha = 0.5; _weights1.instance(); _weights2.instance(); _bias1.instance(); _bias2 = 0; _z2.instance(); _a2.instance(); _initialized = false; } MLPPMLP::~MLPPMLP() { } void MLPPMLP::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMLP::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMLP::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMLP::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMLP::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPMLP::get_n_hidden); ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPMLP::set_n_hidden); ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPMLP::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPMLP::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPMLP::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPMLP::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPMLP::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPMLP::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPMLP::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPMLP::initialize); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPMLP::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPMLP::model_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "UI"), &MLPPMLP::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "UI"), &MLPPMLP::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "UI"), &MLPPMLP::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPMLP::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPMLP::save); }