// // DualSVC.cpp // // Created by Marc Melikyan on 10/2/20. // #include "DualSVC.hpp" #include "Activation/Activation.hpp" #include "LinAlg/LinAlg.hpp" #include "Regularization/Reg.hpp" #include "Utilities/Utilities.hpp" #include "Cost/Cost.hpp" #include #include namespace MLPP{ DualSVC::DualSVC(std::vector> inputSet, std::vector outputSet, double C, std::string kernel) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), C(C), kernel(kernel) { y_hat.resize(n); bias = Utilities::biasInitialization(); alpha = Utilities::weightInitialization(n); // One alpha for all training examples, as per the lagrangian multipliers. K = kernelFunction(inputSet, inputSet, kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated. } std::vector DualSVC::modelSetTest(std::vector> X){ return Evaluate(X); } double DualSVC::modelTest(std::vector x){ return Evaluate(x); } void DualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI){ class Cost cost; Activation avn; LinAlg alg; Reg regularization; double cost_prev = 0; int epoch = 1; forwardPass(); while(true){ cost_prev = Cost(alpha, inputSet, outputSet); alpha = alg.subtraction(alpha, alg.scalarMultiply(learning_rate, cost.dualFormSVMDeriv(alpha, inputSet, outputSet))); alphaProjection(); // Calculating the bias double biasGradient = 0; for(int i = 0; i < alpha.size(); i++){ double sum = 0; if(alpha[i] < C && alpha[i] > 0){ for(int j = 0; j < alpha.size(); j++){ if(alpha[j] > 0){ sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], inputSet[i]); // TO DO: DON'T forget to add non-linear kernelizations. } } } biasGradient = (1 - outputSet[i] * sum) / outputSet[i]; break; } bias -= biasGradient * learning_rate; forwardPass(); // UI PORTION if(UI) { Utilities::CostInfo(epoch, cost_prev, Cost(alpha, inputSet, outputSet)); Utilities::UI(alpha, bias); std::cout << score() << std::endl; // TO DO: DELETE THIS. } epoch++; if(epoch > max_epoch) { break; } } } // void DualSVC::SGD(double learning_rate, int max_epoch, bool UI){ // class Cost cost; // Activation avn; // LinAlg alg; // Reg regularization; // double cost_prev = 0; // int epoch = 1; // while(true){ // std::random_device rd; // std::default_random_engine generator(rd()); // std::uniform_int_distribution distribution(0, int(n - 1)); // int outputIndex = distribution(generator); // cost_prev = Cost(alpha, inputSet[outputIndex], outputSet[outputIndex]); // // Bias updation // bias -= learning_rate * costDeriv; // y_hat = Evaluate({inputSet[outputIndex]}); // if(UI) { // Utilities::CostInfo(epoch, cost_prev, Cost(alpha)); // Utilities::UI(weights, bias); // } // epoch++; // if(epoch > max_epoch) { break; } // } // forwardPass(); // } // void DualSVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){ // class Cost cost; // Activation avn; // LinAlg alg; // Reg regularization; // double cost_prev = 0; // int epoch = 1; // // Creating the mini-batches // int n_mini_batch = n/mini_batch_size; // auto [inputMiniBatches, outputMiniBatches] = Utilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // while(true){ // for(int i = 0; i < n_mini_batch; i++){ // std::vector y_hat = Evaluate(inputMiniBatches[i]); // std::vector z = propagate(inputMiniBatches[i]); // cost_prev = Cost(z, outputMiniBatches[i], weights, C); // // Calculating the weight gradients // weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C)))); // weights = regularization.regWeights(weights, learning_rate/n, 0, "Ridge"); // // Calculating the bias gradients // bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n; // forwardPass(); // y_hat = Evaluate(inputMiniBatches[i]); // if(UI) { // Utilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C)); // Utilities::UI(weights, bias); // } // } // epoch++; // if(epoch > max_epoch) { break; } // } // forwardPass(); // } double DualSVC::score(){ Utilities util; return util.performance(y_hat, outputSet); } void DualSVC::save(std::string fileName){ Utilities util; util.saveParameters(fileName, alpha, bias); } double DualSVC::Cost(std::vector alpha, std::vector> X, std::vector y){ class Cost cost; return cost.dualFormSVM(alpha, X, y); } std::vector DualSVC::Evaluate(std::vector> X){ Activation avn; return avn.sign(propagate(X)); } std::vector DualSVC::propagate(std::vector> X){ LinAlg alg; std::vector z; for(int i = 0; i < X.size(); i++){ double sum = 0; for(int j = 0; j < alpha.size(); j++){ if(alpha[j] != 0){ sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations. } } sum += bias; z.push_back(sum); } return z; } double DualSVC::Evaluate(std::vector x){ Activation avn; return avn.sign(propagate(x)); } double DualSVC::propagate(std::vector x){ LinAlg alg; double z = 0; for(int j = 0; j < alpha.size(); j++){ if(alpha[j] != 0){ z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations. } } z += bias; return z; } void DualSVC::forwardPass(){ LinAlg alg; Activation avn; z = propagate(inputSet); y_hat = avn.sign(z); } void DualSVC::alphaProjection(){ for(int i = 0; i < alpha.size(); i++){ if(alpha[i] > C){ alpha[i] = C; } else if(alpha[i] < 0){ alpha[i] = 0; } } } double DualSVC::kernelFunction(std::vector u, std::vector v, std::string kernel){ LinAlg alg; if(kernel == "Linear"){ return alg.dot(u, v); } // warning: non-void function does not return a value in all control paths [-Wreturn-type] } std::vector> DualSVC::kernelFunction(std::vector> A, std::vector> B, std::string kernel){ LinAlg alg; if(kernel == "Linear"){ return alg.matmult(inputSet, alg.transpose(inputSet)); } // warning: non-void function does not return a value in all control paths [-Wreturn-type] } }