#ifndef MLPP_GAN_H #define MLPP_GAN_H // // GAN.hpp // // Created by Marc Melikyan on 11/4/20. // #include "core/math/math_defs.h" #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" #include "../hidden_layer/hidden_layer_old.h" #include "../output_layer/output_layer_old.h" #include #include #include class MLPPGAN { public: /* Ref get_input_set(); void set_input_set(const Ref &val); Ref get_output_set(); void set_output_set(const Ref &val); int get_k(); void set_k(const int val); */ std::vector> generate_example(int n); void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); real_t score(); void save(std::string file_name); void add_layer(int n_hidden, std::string activation, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); void add_output_layer(std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); MLPPGAN(real_t k, std::vector> output_set); MLPPGAN(); ~MLPPGAN(); protected: std::vector> model_set_test_generator(std::vector> X); // Evaluator for the generator of the gan. std::vector model_set_test_discriminator(std::vector> X); // Evaluator for the discriminator of the gan. real_t cost(std::vector y_hat, std::vector y); void forward_pass(); void update_discriminator_parameters(std::vector>> hidden_layer_updations, std::vector output_layer_updation, real_t learning_rate); void update_generator_parameters(std::vector>> hidden_layer_updations, real_t learning_rate); std::tuple>>, std::vector> compute_discriminator_gradients(std::vector y_hat, std::vector output_set); std::vector>> compute_generator_gradients(std::vector y_hat, std::vector output_set); void print_ui(int epoch, real_t cost_prev, std::vector y_hat, std::vector output_set); static void _bind_methods(); std::vector> _output_set; std::vector _y_hat; std::vector _network; MLPPOldOutputLayer *_output_layer; int _n; int _k; }; #endif /* GAN_hpp */