#ifndef MLPP_TESTS_H #define MLPP_TESTS_H /*************************************************************************/ /* mlpp_tests.h */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifdef USING_SFW #include "sfw.h" #else #include "core/math/math_defs.h" #include "core/containers/vector.h" #include "core/object/reference.h" #include "core/string/ustring.h" #endif // TODO port this class to use the test module once it's working // Also don't forget to remove it's bindings class MLPPMatrix; class MLPPVector; class MLPPTests : public Reference { GDCLASS(MLPPTests, Reference); public: void test_statistics(); void test_linear_algebra(); void test_univariate_linear_regression(); void test_multivariate_linear_regression_gradient_descent(bool ui = false); void test_multivariate_linear_regression_sgd(bool ui = false); void test_multivariate_linear_regression_mbgd(bool ui = false); void test_multivariate_linear_regression_normal_equation(bool ui = false); void test_multivariate_linear_regression_adam(bool ui = false); void test_multivariate_linear_regression_score_sgd_adam(bool ui = false); void test_multivariate_linear_regression_epochs_gradient_descent(bool ui = false); void test_multivariate_linear_regression_newton_raphson(bool ui = false); void test_logistic_regression(bool ui = false); void test_probit_regression(bool ui = false); void test_c_log_log_regression(bool ui = false); void test_exp_reg_regression(bool ui = false); void test_tanh_regression(bool ui = false); void test_softmax_regression(bool ui = false); void test_support_vector_classification(bool ui = false); void test_mlp(bool ui = false); void test_soft_max_network(bool ui = false); void test_autoencoder(bool ui = false); void test_dynamically_sized_ann(bool ui = false); void test_wgan_old(bool ui = false); void test_wgan(bool ui = false); void test_ann(bool ui = false); void test_dynamically_sized_mann(bool ui = false); void test_train_test_split_mann(bool ui = false); void test_naive_bayes(); void test_k_means(bool ui = false); void test_knn(bool ui = false); void test_convolution_tensors_etc(); void test_pca_svd_eigenvalues_eigenvectors(bool ui = false); void test_nlp_and_data(bool ui = false); void test_outlier_finder(bool ui = false); void test_new_math_functions(); void test_positive_definiteness_checker(); void test_numerical_analysis(); void test_support_vector_classification_kernel(bool ui = false); void test_mlpp_vector(); void is_approx_equalsd(real_t a, real_t b, const String &str); void is_approx_equals_dvec(const Vector &a, const Vector &b, const String &str); void is_approx_equals_dmat(const Vector> &a, const Vector> &b, const String &str); void is_approx_equals_mat(Ref a, Ref b, const String &str); void is_approx_equals_vec(Ref a, Ref b, const String &str); MLPPTests(); ~MLPPTests(); protected: static void _bind_methods(); String _breast_cancer_data_path; String _breast_cancer_svm_data_path; String _california_housing_data_path; String _fires_and_crime_data_path; String _iris_data_path; String _mnist_test_data_path; String _mnist_train_data_path; String _wine_data_path; }; #endif