#ifndef MLPP_PROBIT_REG_H #define MLPP_PROBIT_REG_H #include "core/math/math_defs.h" #include "core/object/resource.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" #include "../regularization/reg.h" class MLPPProbitReg : public Resource { GDCLASS(MLPPProbitReg, Resource); public: Ref get_input_set(); void set_input_set(const Ref &val); Ref get_output_set(); void set_output_set(const Ref &val); MLPPReg::RegularizationType get_reg(); void set_reg(const MLPPReg::RegularizationType val); real_t get_lambda(); void set_lambda(const real_t val); real_t get_alpha(); void set_alpha(const real_t val); Ref data_z_get() const; void data_z_set(const Ref &val); Ref data_y_hat_get() const; void data_y_hat_set(const Ref &val); Ref data_weights_get() const; void data_weights_set(const Ref &val); real_t data_bias_get() const; void data_bias_set(const real_t val); Ref model_set_test(const Ref &X); real_t model_test(const Ref &x); void train_gradient_descent(real_t learning_rate, int max_epoch = 0, bool ui = false); void train_mle(real_t learning_rate, int max_epoch = 0, bool ui = false); void train_sgd(real_t learning_rate, int max_epoch = 0, bool ui = false); void train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false); real_t score(); bool needs_init() const; void initialize(); MLPPProbitReg(const Ref &p_input_set, const Ref &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5); MLPPProbitReg(); ~MLPPProbitReg(); protected: real_t cost(const Ref &y_hat, const Ref &y); Ref evaluatem(const Ref &X); Ref propagatem(const Ref &X); real_t evaluatev(const Ref &x); real_t propagatev(const Ref &x); void forward_pass(); static void _bind_methods(); Ref _input_set; Ref _output_set; // Regularization Params MLPPReg::RegularizationType _reg; real_t _lambda; real_t _alpha; /* This is the controlling param for Elastic Net*/ Ref _z; Ref _y_hat; Ref _weights; real_t _bias; }; #endif /* ProbitReg_hpp */