// // MLP.cpp // // Created by Marc Melikyan on 11/4/20. // #include "mlp.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include Ref MLPPMLP::get_input_set() { return input_set; } void MLPPMLP::set_input_set(const Ref &val) { input_set = val; _initialized = false; } Ref MLPPMLP::get_output_set() { return output_set; } void MLPPMLP::set_output_set(const Ref &val) { output_set = val; _initialized = false; } int MLPPMLP::get_n_hidden() { return n_hidden; } void MLPPMLP::set_n_hidden(const int val) { n_hidden = val; _initialized = false; } real_t MLPPMLP::get_lambda() { return lambda; } void MLPPMLP::set_lambda(const real_t val) { lambda = val; _initialized = false; } real_t MLPPMLP::get_alpha() { return alpha; } void MLPPMLP::set_alpha(const real_t val) { alpha = val; _initialized = false; } MLPPReg::RegularizationType MLPPMLP::get_reg() { return reg; } void MLPPMLP::set_reg(const MLPPReg::RegularizationType val) { reg = val; _initialized = false; } Ref MLPPMLP::model_set_test(const Ref &X) { return evaluatem(X); } real_t MLPPMLP::model_test(const Ref &x) { return evaluatev(x); } void MLPPMLP::gradient_descent(real_t learning_rate, int max_epoch, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(y_hat, output_set); // Calculating the errors Ref error = alg.subtractionnv(y_hat, output_set); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = alg.mat_vec_multv(alg.transposem(a2), error); // weights and bias updation for layer 2 weights2 = alg.subtractionnv(weights2, alg.scalar_multiplynv(learning_rate / n, D2_1)); weights2 = regularization.reg_weightsv(weights2, lambda, alpha, reg); bias2 -= learning_rate * alg.sum_elementsv(error) / n; // Calculating the weight/bias for layer 1 Ref D1_1; D1_1 = alg.outer_product(error, weights2); Ref D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(z2)); Ref D1_3 = alg.matmultm(alg.transposem(input_set), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtractionm(weights1, alg.scalar_multiplym(learning_rate / n, D1_3)); weights1 = regularization.reg_weightsm(weights1, lambda, alpha, reg); bias1 = alg.subtract_matrix_rows(bias1, alg.scalar_multiplym(learning_rate / n, D1_2)); forward_pass(); // UI PORTION if (UI) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, output_set)); std::cout << "Layer 1:" << std::endl; MLPPUtilities::print_ui_mb(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::print_ui_vb(weights2, bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPMLP::sgd(real_t learning_rate, int max_epoch, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); Ref input_set_row_tmp; input_set_row_tmp.instance(); input_set_row_tmp->resize(input_set->size().x); Ref output_set_row_tmp; output_set_row_tmp.instance(); output_set_row_tmp->resize(1); Ref y_hat_row_tmp; y_hat_row_tmp.instance(); y_hat_row_tmp->resize(1); Ref lz2; lz2.instance(); Ref la2; la2.instance(); while (true) { int output_Index = distribution(generator); input_set->get_row_into_mlpp_vector(output_Index, input_set_row_tmp); real_t output_element = output_set->get_element(output_Index); output_set_row_tmp->set_element(0, output_element); real_t y_hat = evaluatev(input_set_row_tmp); y_hat_row_tmp->set_element(0, y_hat); propagatev(input_set_row_tmp, lz2, la2); cost_prev = cost(y_hat_row_tmp, output_set_row_tmp); real_t error = y_hat - output_element; // Weight updation for layer 2 Ref D2_1 = alg.scalar_multiplym(error, a2); weights2 = alg.subtractionm(weights2, alg.scalar_multiplym(learning_rate, D2_1)); weights2 = regularization.reg_weightsm(weights2, lambda, alpha, reg); // Bias updation for layer 2 bias2 -= learning_rate * error; // Weight updation for layer 1 Ref D1_1 = alg.scalar_multiplym(error, weights2); Ref D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(z2)); Ref D1_3 = alg.outer_product(input_set_row_tmp, D1_2); weights1 = alg.subtractionm(weights1, alg.scalar_multiplym(learning_rate, D1_3)); weights1 = regularization.reg_weightsm(weights1, lambda, alpha, reg); // Bias updation for layer 1 bias1 = alg.subtractionm(bias1, alg.scalar_multiplym(learning_rate, D1_2)); y_hat = evaluatev(input_set_row_tmp); if (UI) { MLPPUtilities::cost_info(epoch, cost_prev, cost_prev); std::cout << "Layer 1:" << std::endl; MLPPUtilities::print_ui_mb(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::print_ui_vb(weights2, bias2); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPMLP::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { ERR_FAIL_COND(!_initialized); MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; Ref lz2; lz2.instance(); Ref la2; la2.instance(); // Creating the mini-batches int n_mini_batch = n / mini_batch_size; MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(input_set, output_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_input = batches.input_sets[i]; Ref current_output = batches.output_sets[i]; Ref y_hat = evaluatem(current_input); propagatev(current_input, lz2, la2); cost_prev = cost(y_hat, current_output); // Calculating the errors Ref error = alg.subtractionnv(y_hat, current_output); // Calculating the weight/bias gradients for layer 2 Ref D2_1 = alg.mat_vec_multv(alg.transposem(a2), error); real_t lr_d_cos = learning_rate / static_cast(current_output->size()); // weights and bias updation for layser 2 weights2 = alg.subtractionnv(weights2, alg.scalar_multiplynv(lr_d_cos, D2_1)); weights2 = regularization.reg_weightsm(weights2, lambda, alpha, reg); // Calculating the bias gradients for layer 2 real_t b_gradient = alg.sum_elementsv(error); // Bias Updation for layer 2 bias2 -= learning_rate * b_gradient / current_output->size(); //Calculating the weight/bias for layer 1 Ref D1_1 = alg.outer_product(error, weights2); Ref D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(z2)); Ref D1_3 = alg.matmultm(alg.transposem(current_input), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtractionm(weights1, alg.scalar_multiplym(lr_d_cos, D1_3)); weights1 = regularization.reg_weightsm(weights1, lambda, alpha, reg); bias1 = alg.subtract_matrix_rows(bias1, alg.scalar_multiplym(lr_d_cos, D1_2)); y_hat = evaluatem(current_input); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, current_output)); std::cout << "Layer 1:" << std::endl; MLPPUtilities::print_ui_mb(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::print_ui_vb(weights2, bias2); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPMLP::score() { MLPPUtilities util; return util.performance_mat(y_hat, output_set); } void MLPPMLP::save(const String &fileName) { ERR_FAIL_COND(!_initialized); MLPPUtilities util; //util.saveParameters(fileName, weights1, bias1, 0, 1); //util.saveParameters(fileName, weights2, bias2, 1, 2); } bool MLPPMLP::is_initialized() { return _initialized; } void MLPPMLP::initialize() { if (_initialized) { return; } ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid() || n_hidden == 0); n = input_set->size().y; k = input_set->size().x; MLPPActivation avn; y_hat->resize(n); MLPPUtilities util; weights1->resize(Size2i(k, n_hidden)); weights2->resize(n_hidden); bias1->resize(n_hidden); util.weight_initializationm(weights1); util.weight_initializationv(weights2); util.bias_initializationv(bias1); bias2 = util.bias_initializationr(); z2.instance(); a2.instance(); _initialized = true; } real_t MLPPMLP::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; class MLPPCost cost; return cost.log_lossv(y_hat, y) + regularization.reg_termv(weights2, lambda, alpha, reg) + regularization.reg_termv(weights1, lambda, alpha, reg); } Ref MLPPMLP::evaluatem(const Ref &X) { MLPPLinAlg alg; MLPPActivation avn; Ref pz2 = alg.mat_vec_addv(alg.matmultm(X, weights1), bias1); Ref pa2 = avn.sigmoid_normm(pz2); return avn.sigmoid_normv(alg.scalar_addnv(bias2, alg.mat_vec_multv(pa2, weights2))); } void MLPPMLP::propagatem(const Ref &X, Ref z2_out, Ref a2_out) { MLPPLinAlg alg; MLPPActivation avn; z2_out->set_from_mlpp_matrix(alg.mat_vec_addv(alg.matmultm(X, weights1), bias1)); a2_out->set_from_mlpp_matrix(avn.sigmoid_normm(z2)); } real_t MLPPMLP::evaluatev(const Ref &x) { MLPPLinAlg alg; MLPPActivation avn; Ref pz2 = alg.additionnv(alg.mat_vec_multv(alg.transposem(weights1), x), bias1); Ref pa2 = avn.sigmoid_normv(pz2); return avn.sigmoid(alg.dotv(weights2, pa2) + bias2); } void MLPPMLP::propagatev(const Ref &x, Ref z2_out, Ref a2_out) { MLPPLinAlg alg; MLPPActivation avn; z2_out->set_from_mlpp_vector(alg.additionnv(alg.mat_vec_multv(alg.transposem(weights1), x), bias1)); a2_out->set_from_mlpp_vector(avn.sigmoid_normv(z2)); } void MLPPMLP::forward_pass() { MLPPLinAlg alg; MLPPActivation avn; z2 = alg.mat_vec_addv(alg.matmultm(input_set, weights1), bias1); a2 = avn.sigmoid_normv(z2); y_hat = avn.sigmoid_normv(alg.scalar_addm(bias2, alg.mat_vec_multv(a2, weights2))); } MLPPMLP::MLPPMLP(const Ref &p_input_set, const Ref &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { input_set = p_input_set; output_set = p_output_set; y_hat.instance(); n_hidden = p_n_hidden; n = input_set->size().y; k = input_set->size().x; reg = p_reg; lambda = p_lambda; alpha = p_alpha; MLPPActivation avn; y_hat->resize(n); MLPPUtilities util; weights1.instance(); weights1->resize(Size2i(k, n_hidden)); weights2.instance(); weights2->resize(n_hidden); bias1.instance(); bias1->resize(n_hidden); util.weight_initializationm(weights1); util.weight_initializationv(weights2); util.bias_initializationv(bias1); bias2 = util.bias_initializationr(); z2.instance(); a2.instance(); _initialized = true; } MLPPMLP::MLPPMLP() { y_hat.instance(); n_hidden = 0; n = 0; k = 0; reg = MLPPReg::REGULARIZATION_TYPE_NONE; lambda = 0.5; alpha = 0.5; weights1.instance(); weights2.instance(); bias1.instance(); bias2 = 0; z2.instance(); a2.instance(); _initialized = false; } MLPPMLP::~MLPPMLP() { } void MLPPMLP::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMLP::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMLP::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMLP::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMLP::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPMLP::get_n_hidden); ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPMLP::set_n_hidden); ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPMLP::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPMLP::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPMLP::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPMLP::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPMLP::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPMLP::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPMLP::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPMLP::initialize); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPMLP::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPMLP::model_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "UI"), &MLPPMLP::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "UI"), &MLPPMLP::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "UI"), &MLPPMLP::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPMLP::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPMLP::save); } // ======= OLD ======= MLPPMLPOld::MLPPMLPOld(std::vector> p_inputSet, std::vector p_outputSet, int p_n_hidden, std::string p_reg, real_t p_lambda, real_t p_alpha) { inputSet = p_inputSet; outputSet = p_outputSet; n_hidden = p_n_hidden; n = p_inputSet.size(); k = p_inputSet[0].size(); reg = p_reg; lambda = p_lambda; alpha = p_alpha; MLPPActivation avn; y_hat.resize(n); weights1 = MLPPUtilities::weightInitialization(k, n_hidden); weights2 = MLPPUtilities::weightInitialization(n_hidden); bias1 = MLPPUtilities::biasInitialization(n_hidden); bias2 = MLPPUtilities::biasInitialization(); } std::vector MLPPMLPOld::modelSetTest(std::vector> X) { return Evaluate(X); } real_t MLPPMLPOld::modelTest(std::vector x) { return Evaluate(x); } void MLPPMLPOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); // Calculating the errors std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight/bias gradients for layer 2 std::vector D2_1 = alg.mat_vec_mult(alg.transpose(a2), error); // weights and bias updation for layer 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / n, D2_1)); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); bias2 -= learning_rate * alg.sum_elements(error) / n; // Calculating the weight/bias for layer 1 std::vector> D1_1; D1_1.resize(n); D1_1 = alg.outerProduct(error, weights2); std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); std::vector> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / n, D1_3)); weights1 = regularization.regWeights(weights1, lambda, alpha, reg); bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate / n, D1_2)); forwardPass(); // UI PORTION if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(weights2, bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPMLPOld::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; while (true) { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); real_t y_hat = Evaluate(inputSet[outputIndex]); auto propagate_result = propagate(inputSet[outputIndex]); auto z2 = std::get<0>(propagate_result); auto a2 = std::get<1>(propagate_result); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); real_t error = y_hat - outputSet[outputIndex]; // Weight updation for layer 2 std::vector D2_1 = alg.scalarMultiply(error, a2); weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1)); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); // Bias updation for layer 2 bias2 -= learning_rate * error; // Weight updation for layer 1 std::vector D1_1 = alg.scalarMultiply(error, weights2); std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); std::vector> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2); weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3)); weights1 = regularization.regWeights(weights1, lambda, alpha, reg); // Bias updation for layer 1 bias1 = alg.subtraction(bias1, alg.scalarMultiply(learning_rate, D1_2)); y_hat = Evaluate(inputSet[outputIndex]); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] })); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(weights2, bias2); } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } void MLPPMLPOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; auto minibatches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(minibatches); auto outputMiniBatches = std::get<1>(minibatches); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = Evaluate(inputMiniBatches[i]); auto propagate_result = propagate(inputMiniBatches[i]); auto z2 = std::get<0>(propagate_result); auto a2 = std::get<1>(propagate_result); cost_prev = Cost(y_hat, outputMiniBatches[i]); // Calculating the errors std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight/bias gradients for layer 2 std::vector D2_1 = alg.mat_vec_mult(alg.transpose(a2), error); // weights and bias updation for layser 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D2_1)); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); // Calculating the bias gradients for layer 2 //real_t b_gradient = alg.sum_elements(error); // Bias Updation for layer 2 bias2 -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); //Calculating the weight/bias for layer 1 std::vector> D1_1 = alg.outerProduct(error, weights2); std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_3)); weights1 = regularization.regWeights(weights1, lambda, alpha, reg); bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_2)); y_hat = Evaluate(inputMiniBatches[i]); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i])); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(weights2, bias2); } } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } real_t MLPPMLPOld::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } void MLPPMLPOld::save(std::string fileName) { MLPPUtilities util; util.saveParameters(fileName, weights1, bias1, 0, 1); util.saveParameters(fileName, weights2, bias2, 1, 2); } real_t MLPPMLPOld::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.LogLoss(y_hat, y) + regularization.regTerm(weights2, lambda, alpha, reg) + regularization.regTerm(weights1, lambda, alpha, reg); } std::vector MLPPMLPOld::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); std::vector> a2 = avn.sigmoid(z2); return avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2))); } std::tuple>, std::vector>> MLPPMLPOld::propagate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); std::vector> a2 = avn.sigmoid(z2); return { z2, a2 }; } real_t MLPPMLPOld::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); std::vector a2 = avn.sigmoid(z2); return avn.sigmoid(alg.dot(weights2, a2) + bias2); } std::tuple, std::vector> MLPPMLPOld::propagate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); std::vector a2 = avn.sigmoid(z2); return { z2, a2 }; } void MLPPMLPOld::forwardPass() { MLPPLinAlg alg; MLPPActivation avn; z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1); a2 = avn.sigmoid(z2); y_hat = avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2))); }