#ifndef MLPP_MANN_H #define MLPP_MANN_H /*************************************************************************/ /* mann.h */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2022-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "core/math/math_defs.h" #include "core/object/reference.h" #include "../regularization/reg.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" #include "../hidden_layer/hidden_layer.h" #include "../multi_output_layer/multi_output_layer.h" class MLPPMANN : public Reference { GDCLASS(MLPPMANN, Reference); public: /* Ref get_input_set(); void set_input_set(const Ref &val); Ref get_output_set(); void set_output_set(const Ref &val); */ Ref model_set_test(const Ref &X); Ref model_test(const Ref &x); void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); real_t score(); void save(const String &file_name); void add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); void add_output_layer(MLPPActivation::ActivationFunction activation, MLPPCost::CostTypes loss, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5); bool is_initialized(); void initialize(); MLPPMANN(const Ref &p_input_set, const Ref &p_output_set); MLPPMANN(); ~MLPPMANN(); private: real_t cost(const Ref &y_hat, const Ref &y); void forward_pass(); static void _bind_methods(); Ref _input_set; Ref _output_set; Ref _y_hat; Vector> _network; Ref _output_layer; int _n; int _k; int _n_output; bool _initialized; }; #endif /* MANN_hpp */