// // ANN.cpp // // Created by Marc Melikyan on 11/4/20. // #include "ann.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include #include std::vector MLPPANN::model_set_test(std::vector> X) { if (!network.empty()) { network[0].input = X; network[0].forwardPass(); for (uint32_t i = 1; i < network.size(); i++) { network[i].input = network[i - 1].a; network[i].forwardPass(); } outputLayer->input = network[network.size() - 1].a; } else { outputLayer->input = X; } outputLayer->forwardPass(); return outputLayer->a; } real_t MLPPANN::model_test(std::vector x) { if (!network.empty()) { network[0].Test(x); for (uint32_t i = 1; i < network.size(); i++) { network[i].Test(network[i - 1].a_test); } outputLayer->Test(network[network.size() - 1].a_test); } else { outputLayer->Test(x); } return outputLayer->a_test; } void MLPPANN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; forward_pass(); real_t initial_learning_rate = learning_rate; alg.printMatrix(network[network.size() - 1].weights); while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); cost_prev = cost(y_hat, outputSet); auto grads = compute_gradients(y_hat, outputSet); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad); outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad); update_parameters(cumulativeHiddenLayerWGrad, outputWGrad, learning_rate); // subject to change. may want bias to have this matrix too. std::cout << learning_rate << std::endl; forward_pass(); if (ui) { print_ui(epoch, cost_prev, y_hat, outputSet); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPANN::sgd(real_t learning_rate, int max_epoch, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); std::vector y_hat = model_set_test({ inputSet[outputIndex] }); cost_prev = cost({ y_hat }, { outputSet[outputIndex] }); auto grads = compute_gradients(y_hat, { outputSet[outputIndex] }); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad); outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad); update_parameters(cumulativeHiddenLayerWGrad, outputWGrad, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test({ inputSet[outputIndex] }); if (ui) { print_ui(epoch, cost_prev, y_hat, { outputSet[outputIndex] }); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPANN::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; // always evaluate the result // always do forward pass only ONCE at end. auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = model_set_test(inputMiniBatches[i]); cost_prev = cost(y_hat, outputMiniBatches[i]); auto grads = compute_gradients(y_hat, outputMiniBatches[i]); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad); outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad); update_parameters(cumulativeHiddenLayerWGrad, outputWGrad, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test(inputMiniBatches[i]); if (ui) { print_ui(epoch, cost_prev, y_hat, outputMiniBatches[i]); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPANN::momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool nag, bool ui) { class MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; // always evaluate the result // always do forward pass only ONCE at end. auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector>> v_hidden; std::vector v_output; while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = model_set_test(inputMiniBatches[i]); cost_prev = cost(y_hat, outputMiniBatches[i]); auto grads = compute_gradients(y_hat, outputMiniBatches[i]); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); if (!network.empty() && v_hidden.empty()) { // Initing our tensor v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad); } if (v_output.empty()) { v_output.resize(outputWGrad.size()); } if (nag) { // "Aposterori" calculation update_parameters(v_hidden, v_output, 0); // DON'T update bias. } v_hidden = alg.addition(alg.scalarMultiply(gamma, v_hidden), alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad)); v_output = alg.addition(alg.scalarMultiply(gamma, v_output), alg.scalarMultiply(learning_rate / n, outputWGrad)); update_parameters(v_hidden, v_output, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test(inputMiniBatches[i]); if (ui) { print_ui(epoch, cost_prev, y_hat, outputMiniBatches[i]); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPANN::adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; // always evaluate the result // always do forward pass only ONCE at end. auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector>> v_hidden; std::vector v_output; while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = model_set_test(inputMiniBatches[i]); cost_prev = cost(y_hat, outputMiniBatches[i]); auto grads = compute_gradients(y_hat, outputMiniBatches[i]); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); if (!network.empty() && v_hidden.empty()) { // Initing our tensor v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad); } if (v_output.empty()) { v_output.resize(outputWGrad.size()); } v_hidden = alg.addition(v_hidden, alg.exponentiate(cumulativeHiddenLayerWGrad, 2)); v_output = alg.addition(v_output, alg.exponentiate(outputWGrad, 2)); std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(cumulativeHiddenLayerWGrad, alg.scalarAdd(e, alg.sqrt(v_hidden)))); std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(outputWGrad, alg.scalarAdd(e, alg.sqrt(v_output)))); update_parameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test(inputMiniBatches[i]); if (ui) { print_ui(epoch, cost_prev, y_hat, outputMiniBatches[i]); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPANN::adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; // always evaluate the result // always do forward pass only ONCE at end. auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector>> v_hidden; std::vector v_output; while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = model_set_test(inputMiniBatches[i]); cost_prev = cost(y_hat, outputMiniBatches[i]); auto grads = compute_gradients(y_hat, outputMiniBatches[i]); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); if (!network.empty() && v_hidden.empty()) { // Initing our tensor v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad); } if (v_output.empty()) { v_output.resize(outputWGrad.size()); } v_hidden = alg.addition(alg.scalarMultiply(1 - b1, v_hidden), alg.scalarMultiply(b1, alg.exponentiate(cumulativeHiddenLayerWGrad, 2))); v_output = alg.addition(v_output, alg.exponentiate(outputWGrad, 2)); std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(cumulativeHiddenLayerWGrad, alg.scalarAdd(e, alg.sqrt(v_hidden)))); std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(outputWGrad, alg.scalarAdd(e, alg.sqrt(v_output)))); update_parameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test(inputMiniBatches[i]); if (ui) { print_ui(epoch, cost_prev, y_hat, outputMiniBatches[i]); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPANN::adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; // always evaluate the result // always do forward pass only ONCE at end. auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector>> m_hidden; std::vector>> v_hidden; std::vector m_output; std::vector v_output; while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = model_set_test(inputMiniBatches[i]); cost_prev = cost(y_hat, outputMiniBatches[i]); auto grads = compute_gradients(y_hat, outputMiniBatches[i]); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad); v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad); } if (m_output.empty() && v_output.empty()) { m_output.resize(outputWGrad.size()); v_output.resize(outputWGrad.size()); } m_hidden = alg.addition(alg.scalarMultiply(b1, m_hidden), alg.scalarMultiply(1 - b1, cumulativeHiddenLayerWGrad)); v_hidden = alg.addition(alg.scalarMultiply(b2, v_hidden), alg.scalarMultiply(1 - b2, alg.exponentiate(cumulativeHiddenLayerWGrad, 2))); m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad)); v_output = alg.addition(alg.scalarMultiply(b2, v_output), alg.scalarMultiply(1 - b2, alg.exponentiate(outputWGrad, 2))); std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); std::vector>> v_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_hidden); std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); std::vector v_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_output); std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_hat, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_hat, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); update_parameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test(inputMiniBatches[i]); if (ui) { print_ui(epoch, cost_prev, y_hat, outputMiniBatches[i]); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPANN::adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; // always evaluate the result // always do forward pass only ONCE at end. auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector>> m_hidden; std::vector>> u_hidden; std::vector m_output; std::vector u_output; while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = model_set_test(inputMiniBatches[i]); cost_prev = cost(y_hat, outputMiniBatches[i]); auto grads = compute_gradients(y_hat, outputMiniBatches[i]); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); if (!network.empty() && m_hidden.empty() && u_hidden.empty()) { // Initing our tensor m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad); u_hidden = alg.resize(u_hidden, cumulativeHiddenLayerWGrad); } if (m_output.empty() && u_output.empty()) { m_output.resize(outputWGrad.size()); u_output.resize(outputWGrad.size()); } m_hidden = alg.addition(alg.scalarMultiply(b1, m_hidden), alg.scalarMultiply(1 - b1, cumulativeHiddenLayerWGrad)); u_hidden = alg.max(alg.scalarMultiply(b2, u_hidden), alg.abs(cumulativeHiddenLayerWGrad)); m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad)); u_output = alg.max(alg.scalarMultiply(b2, u_output), alg.abs(outputWGrad)); std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_hat, alg.scalarAdd(e, u_hidden))); std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_hat, alg.scalarAdd(e, u_output))); update_parameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test(inputMiniBatches[i]); if (ui) { print_ui(epoch, cost_prev, y_hat, outputMiniBatches[i]); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPANN::nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; // always evaluate the result // always do forward pass only ONCE at end. auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector>> m_hidden; std::vector>> v_hidden; std::vector m_output; std::vector v_output; while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = model_set_test(inputMiniBatches[i]); cost_prev = cost(y_hat, outputMiniBatches[i]); auto grads = compute_gradients(y_hat, outputMiniBatches[i]); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad); v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad); } if (m_output.empty() && v_output.empty()) { m_output.resize(outputWGrad.size()); v_output.resize(outputWGrad.size()); } m_hidden = alg.addition(alg.scalarMultiply(b1, m_hidden), alg.scalarMultiply(1 - b1, cumulativeHiddenLayerWGrad)); v_hidden = alg.addition(alg.scalarMultiply(b2, v_hidden), alg.scalarMultiply(1 - b2, alg.exponentiate(cumulativeHiddenLayerWGrad, 2))); m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad)); v_output = alg.addition(alg.scalarMultiply(b2, v_output), alg.scalarMultiply(1 - b2, alg.exponentiate(outputWGrad, 2))); std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); std::vector>> v_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_hidden); std::vector>> m_hidden_final = alg.addition(alg.scalarMultiply(b1, m_hidden_hat), alg.scalarMultiply((1 - b1) / (1 - std::pow(b1, epoch)), cumulativeHiddenLayerWGrad)); std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); std::vector v_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_output); std::vector m_output_final = alg.addition(alg.scalarMultiply(b1, m_output_hat), alg.scalarMultiply((1 - b1) / (1 - std::pow(b1, epoch)), outputWGrad)); std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_final, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_final, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); update_parameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test(inputMiniBatches[i]); if (ui) { print_ui(epoch, cost_prev, y_hat, outputMiniBatches[i]); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPANN::amsgrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui) { MLPPCost mlpp_cost; MLPPLinAlg alg; real_t cost_prev = 0; int epoch = 1; real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; // always evaluate the result // always do forward pass only ONCE at end. auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(batches); auto outputMiniBatches = std::get<1>(batches); // Initializing necessary components for Adam. std::vector>> m_hidden; std::vector>> v_hidden; std::vector>> v_hidden_hat; std::vector m_output; std::vector v_output; std::vector v_output_hat; while (true) { learning_rate = apply_learning_rate_scheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = model_set_test(inputMiniBatches[i]); cost_prev = cost(y_hat, outputMiniBatches[i]); auto grads = compute_gradients(y_hat, outputMiniBatches[i]); auto cumulativeHiddenLayerWGrad = std::get<0>(grads); auto outputWGrad = std::get<1>(grads); if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad); v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad); v_hidden_hat = alg.resize(v_hidden_hat, cumulativeHiddenLayerWGrad); } if (m_output.empty() && v_output.empty()) { m_output.resize(outputWGrad.size()); v_output.resize(outputWGrad.size()); v_output_hat.resize(outputWGrad.size()); } m_hidden = alg.addition(alg.scalarMultiply(b1, m_hidden), alg.scalarMultiply(1 - b1, cumulativeHiddenLayerWGrad)); v_hidden = alg.addition(alg.scalarMultiply(b2, v_hidden), alg.scalarMultiply(1 - b2, alg.exponentiate(cumulativeHiddenLayerWGrad, 2))); m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad)); v_output = alg.addition(alg.scalarMultiply(b2, v_output), alg.scalarMultiply(1 - b2, alg.exponentiate(outputWGrad, 2))); v_hidden_hat = alg.max(v_hidden_hat, v_hidden); v_output_hat = alg.max(v_output_hat, v_output); std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); update_parameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = model_set_test(inputMiniBatches[i]); if (ui) { print_ui(epoch, cost_prev, y_hat, outputMiniBatches[i]); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPANN::score() { MLPPUtilities util; forward_pass(); return util.performance(y_hat, outputSet); } void MLPPANN::save(std::string fileName) { MLPPUtilities util; if (!network.empty()) { util.saveParameters(fileName, network[0].weights, network[0].bias, false, 1); for (uint32_t i = 1; i < network.size(); i++) { util.saveParameters(fileName, network[i].weights, network[i].bias, true, i + 1); } util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, true, network.size() + 1); } else { util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, false, network.size() + 1); } } void MLPPANN::set_learning_rate_scheduler(std::string type, real_t decayConstant) { lrScheduler = type; MLPPANN::decayConstant = decayConstant; } void MLPPANN::set_learning_rate_scheduler_drop(std::string type, real_t decayConstant, real_t dropRate) { lrScheduler = type; MLPPANN::decayConstant = decayConstant; MLPPANN::dropRate = dropRate; } // https://en.wikipedia.org/wiki/Learning_rate // Learning Rate Decay (C2W2L09) - Andrew Ng - Deep Learning Specialization real_t MLPPANN::apply_learning_rate_scheduler(real_t learningRate, real_t decayConstant, real_t epoch, real_t dropRate) { if (lrScheduler == "Time") { return learningRate / (1 + decayConstant * epoch); } else if (lrScheduler == "Epoch") { return learningRate * (decayConstant / std::sqrt(epoch)); } else if (lrScheduler == "Step") { return learningRate * std::pow(decayConstant, int((1 + epoch) / dropRate)); // Utilizing an explicit int conversion implicitly takes the floor. } else if (lrScheduler == "Exponential") { return learningRate * std::exp(-decayConstant * epoch); } return learningRate; } void MLPPANN::add_layer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { if (network.empty()) { network.push_back(MLPPOldHiddenLayer(n_hidden, activation, inputSet, weightInit, reg, lambda, alpha)); network[0].forwardPass(); } else { network.push_back(MLPPOldHiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha)); network[network.size() - 1].forwardPass(); } } void MLPPANN::add_output_layer(std::string activation, std::string loss, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { if (!network.empty()) { outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha); } else { outputLayer = new MLPPOldOutputLayer(k, activation, loss, inputSet, weightInit, reg, lambda, alpha); } } MLPPANN::MLPPANN(std::vector> p_inputSet, std::vector p_outputSet) { inputSet = p_inputSet; outputSet = p_outputSet; n = inputSet.size(); k = inputSet[0].size(); lrScheduler = "None"; decayConstant = 0; dropRate = 0; } MLPPANN::MLPPANN() { } MLPPANN::~MLPPANN() { delete outputLayer; } real_t MLPPANN::cost(std::vector y_hat, std::vector y) { MLPPReg regularization; MLPPCost mlpp_cost; real_t totalRegTerm = 0; auto cost_function = outputLayer->cost_map[outputLayer->cost]; if (!network.empty()) { for (uint32_t i = 0; i < network.size() - 1; i++) { totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg); } } return (mlpp_cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg); } void MLPPANN::forward_pass() { if (!network.empty()) { network[0].input = inputSet; network[0].forwardPass(); for (uint32_t i = 1; i < network.size(); i++) { network[i].input = network[i - 1].a; network[i].forwardPass(); } outputLayer->input = network[network.size() - 1].a; } else { outputLayer->input = inputSet; } outputLayer->forwardPass(); y_hat = outputLayer->a; } void MLPPANN::update_parameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate) { MLPPLinAlg alg; outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation); outputLayer->bias -= learning_rate * alg.sum_elements(outputLayer->delta) / n; if (!network.empty()) { network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, hiddenLayerUpdations[0]); network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate / n, network[network.size() - 1].delta)); for (int i = network.size() - 2; i >= 0; i--) { network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]); network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta)); } } } std::tuple>>, std::vector> MLPPANN::compute_gradients(std::vector y_hat, std::vector outputSet) { // std::cout << "BEGIN" << std::endl; MLPPCost mlpp_cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost]; auto outputAvn = outputLayer->activation_map[outputLayer->activation]; outputLayer->delta = alg.hadamard_product((mlpp_cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg)); if (!network.empty()) { auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. for (int i = network.size() - 2; i >= 0; i--) { hiddenLayerAvn = network[i].activation_map[network[i].activation]; network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1)); hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } } return { cumulativeHiddenLayerWGrad, outputWGrad }; } void MLPPANN::print_ui(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet) { MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, outputSet)); std::cout << "Layer " << network.size() + 1 << ": " << std::endl; MLPPUtilities::UI(outputLayer->weights, outputLayer->bias); if (!network.empty()) { for (int i = network.size() - 1; i >= 0; i--) { std::cout << "Layer " << i + 1 << ": " << std::endl; MLPPUtilities::UI(network[i].weights, network[i].bias); } } } void MLPPANN::_bind_methods() { }